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PREFACE ”<</

The purpose of this monograph is to mak ‘e\il\%ilabie in
Englizh the elementary parts of classical ml%é rale nmnber
theory. An earliey version in mimeogra pﬁ\(‘ﬂim i was used
at Cornell TUniver sity in the qpung gh of 104 7—48, and
the present version has accor d v profited from the
eriticisms of several veaders, T gh@\pmtu,ulalh' indebied Lo
Miss Leila R, Rainewdor. hhn@‘mwmgg aasistance in the
revision and preparation /ﬁ\i"ﬁ? manuzeript for publication,

Harry PoLtaArn
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DIVISIBILITY

1. Uniqueness of factorization. Elementary number
theory has for its object the study of the nfegers §,
AL, £2, ---. Certain of these, the prime numbersf N
occupy a special position; they are the numbers m which -
are different from & and 21, and which possess no ,faf}gbﬁrs
other than £1 and . For example 2,3, —5 a,rP‘ prime,
whereas 6 = 2:3, 9 = 3° ave not. The impaptance of the
primes ¢ due to the faect that, together with“0 and 41,
all the other integers can be constructed foom them. The
fundamenial iheorem of :-11‘11.1‘1Ineti(&,'\ihﬁserts that  every
wnteger greater than 1 can be faclored Bidenc and only one way,
apart from order, as the p?‘o(hf.cﬂ’g’{.}"' positive prime numbers,
Thus N
12 =MBEI‘\3‘¢ﬁfiin;Bb‘;gaf§;.3fgin

are the only factorizationg of 12 into positive prime factors,
and these factorizatiens all yield precscly the same
factors; the onlwdifference among them is in the order of
appearance of Ahe Yactors.

We shall @6 a proof of the fundamental theorem of
a.rithlnei;-i{‘,,fln the course of it the following fact will
play_ardecisive role: every collection, finite or infinite, of
11(‘1'1%'—1;\§g§1u\-'e integers contains a smallest one. The validity
ofsthis assumption will not be debated here; it is cortamly

m:'}.}'ém‘ inguitively, and the reader may take it to be one of
\\‘ the defining properiies of integers. Some prelimnacy
theorems will be established first.

TuwouwrM 1. Lf @ and b are dnlegers, b > 0, then there
crist endegers g and » such that

o= by 4+ 7,
where O < < b, The integors ¢ and v ore wntque.
1



™\
~\J

™3
S
3

\
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Consider the rational number %— and let g be the largest

- a .
integer which does not exceed it. Then g < 3 butg+1>

_ LI\
%. Define r as ¢ — bg. Since% = % — g > 0,and b > 0, ik

a — gy
follows that » > €. Alsofrom 1 > % —g= 1{\—_ o

N, 3

we conclude that r < b. N
To show that g and  are unique suppose t{a\t ' and ¢ iz
any. "pair of integers for which

.

) a—bq+'r,,\; 0 <y <D,
If ¢/ >g,thenq >q¢+1, bothat\
a~bqf<a—b{q'+1)_r—b<o

this contradiets »* > 0. Ih}’ < g, then ¢ < g — 1, so that
www dbragiibrary org.in

=g—by 2 —-blg~ D=7+ b2
this contradicts x’\§ b.
Then hoth@‘s&bﬂﬁies g > ¢, 4 < ¢ are ruled out. It

follows that " = q, and hence that »* = r. Thig completes
the pm({i‘ ;}f' Theorem 1.1.

Wl s,hall say thal two integers @ and b are relatively
rwir? if they share no factors except 1. Thug 5 and 2 sre
Mative ly prime, whereas 6 and 9 are not.
TuroreM 12, If a and b ore relafively prime then there
exisl inlegers s and { for which as + U =
Observe that there is no assertion about the uniquencss
of sand {. Infactifa = 3, = 5 we have

2.3-1-5=1, —3:.342.5 =1,

To prove the theorem note first that neither ¢ nor b can
be zero. Consider the set of all numbers of the form
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ax 4+ by, where = and y ave integers. If we choose 2z = 1,

y = 0, and thenz = —1,y = @, it is clear that ¢ and —a

are both in the set. Since @ # 0, one of @ and —a is positive,

20 the set conlains some positive numbers. Let d be the

smallest positive number in the set, and write d = as 4 bt.
By Theorem 1.1 we can find ¢ and r s0 that

b= dg +r, 05-r<.c{:’~

Then \

r="b—dg ="b— (as + by = a{—sq) + b({:—: gf),

20 that r iz also in the set. Now 0 < r < d 0ot possible,
since d i the least positive number in theset. The only
alternative is r = 0. Hence b = dg. ’{K’s{i}ﬂilar argument,
heginning with \®
a = dq’ -i:.jrﬁ,w’ 0<¢ <d
shows that 7' = 0,0 = dy’. OV
o www . dbraulibrary orgin
This proves that ¢ 1s axf@tetor sharéd by both o and b.

But & and b are relativeli™prime, so that ¢ = 1 ; moreover
d iz positive, 2o ik m11~?t* be 1. Henee 1 = as + U,
[n what follow‘s\ﬂfé notation “m | »”7 means “m divides
n’ or “mis a fator of n”, Tf m i3 not a factor of n we write
m A4 n. ’l‘he\foilm\ring theorem Is the key to unique fac-
torizatiom
T :(;RE,\{ 1.3. If p 4s a prime number and p | ab, then
pldnor p b
¥he possibility that |a and p|b is not excluded
\“by the theorem.
If p|e there is nothing to prove. Suppose then that
p 4 @; wo shall show that in this case p must divide b.
Since p and @ are relatively prime there exist integers
{ and m for which

Ip + ma =1, ipb 4 mab = b.
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This follows from the preceding theorem. Since p | ab we
eam write ab = pg. The Jast formula hecomes p{th + mg) =
b, 5o that p | b.

ComorLanry 1.4. If a prime number p divides a product
a0 - - - @y Of tntegers, @ diides at least one of the a; .

For if p divides no a;, then by Theorem 1.5 it cannot
divide any of

N

N ¢

¢\
@it {m)as , -+, (o - G )0 \\

We are now in a position to prove the ful;gbfr’f'rgznml
theorem stated in the opening paragraph of @ ehapicr.
Let m be a positive integer not 1. If it is notJerine suppose
it factors as m = men. , whore my, = 1, mn>» 1. If my and
my arc primes, stop; otherwise repegt/ e procedure for
my and g, and condinue it fov dfesnew factors which
appear. Eventually we must m-riVé;ﬂ- a slage where none
of the factors will decomposc wgdin. Otherwise m, which
1s # finite Intggoer, db@ghhmﬁ@(bfg@duct of an arbitrarily
large number of factors d‘l]& greater than 1,

Thus we arrive st @factorisation

~
A= Tipz -0 Pr,
where each p@, \)osltwe and prime. Suppose

&7 m=ar g
is any{bihér factorization of m into positive primes, We
musf Prove that the two factorisations differ at most in ilie
ofdet in which the primes appear. Since

O P P = Q@ G
\ ;o it foll(_}ws irom Corollary 1.4 that g, must divide one of the
P - We may suppose it to be p; , by renumbering the p; if
DECCSSaTy. Then ¢, | ;. Since p; and g; are positive and
prime p; = ¢; . Hence, dividing out g1 = ¢4 , we abtain

pz...pr:gz..-gs-
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This procedure can be repeated with ga, --+, until all
the prime factors on one side are exhausted. At this stage

ail the fuctors on the other side must also he exhausted;
uiherwise we should have a product of primes on oue side
eyuil to I on the other. Then r = & and we are done.

If wve try to apply the prineiple of unique factorization to

negative integers, we encounter an obvious difficulty in thé ™)
possible presence of minus signs in the factors. Thus | O

12 = 2(=3) = (=) (-5) (=D O

are two factorizations of —12 into primes, and“ﬁfese {ae-
1orizations differ not mevely in the order of thé\Hctors, hut
in the factors themselves. For in the firseasc the factors
are 2,2, —3; in the second case they a2, —3, —2, This
difficulty can be remedied by a slightbestatement of the
fundamental theorem to 1ntlude,ﬂeg¢t1\ e numbers. Let 1

and —1 be called umts The nétstatement iz 1this,
w,dbpaulibrary.org.in
Tueorem 1.3, (The I"wldamcmal Thearem}. Fach integer

ol zero oF o unit con ba“factorm] into the product of primes
which are uniguely d{’{m}mraed to within order and mulliplica-
tion by unifs, N\

The slight chagge in the original proof which ig needed
here will baJefs To the reader.

2., g%éneral problem. We are now in a position to
siatgthe basic problem of algebraic number theory: if we
extend the meaning of “integer” 1o include a wider class of

~ iriﬁthbers than the numbers 0, =1, £2, - - is there still &
N ~alid analogue of Theorem 1.57 The nature of the question
ean hest be made plain by examples.

Fer this purpose we select first the Goussian inlegers.
By such an integer we shall meuan a number of the form
@ -+ b, where g and b arc ordinary integers, and § = VS
To avoid confusion later we shall refer to the ordinary
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integers us the rational integers. Let @ denote the sct of 2!
Gaussinn integers, und J the sct of all rational integers.
Note that in each sct the sum, difference and product of
integers ure integers.

If @ and 3 are numbers in ¢ we say that e divides S
written o | 8, if there is » number v in ¢ such that § = @)
An clement of G ig & wndét if it divides 1, and hened wk
every element of G. A mumber « is prime if it is nof wnil
and if in every faclorization 7 = of one of o orgds a unit.
With this terminology Theorem 1.5 bec:t_)mesz’mea.ningfi_:I
for the integers of G. "‘\

But s it true? It is, 85 we shall show prescntly. This facr
may sirike the reader as only what i, torbe expected, That
such an Impression is erroneo’m?‘\ we demonstrate by
exhibiting another simple clag®\wf “integers” for which
Theorem 1.5 is meaningful, bt false.

Let us now me r}?&lf’bn::@té‘igge%;{ any number gf the form
@+ b~+/—5 wherea an ,?J'are rational integers. Clearly the
sum, difference and product of such integers are of the same
form. We shall dendte the totality of them by 7. Define
unit and primé just as we did for the CGaussian integers
by simply weading H for G wherevor the latter OCCUTE.
As we shallrove a little later, -1 are the only unils in f7;
the IlyniBers 3.7.14+24/25,1 - 2 4/5 will turn out
to .bg;bfime in H. Bul observe that

O 2 =37 042455 A 245,

%50 that the factorization of 21 into prime factors is mot

unique to within order and multiplication by units.

It is therefore reasonable to ask for which classes of
“integers” the fundamental theorem holds, and for which
1t does not. In particular how does one explain the dis-
crepancy in behavior between the sets J and & on the one
hand and H on the other? The answer to these questions
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must be postponed until later, For the present we content
ourselves with demonstrating the assertions just made
concerning the sets ¢ and H.

3. The Gaussian integers. If o = ¢ + bi iz an clement of | A
( ita nor " N(a), or simply Nea, js defined to he oa =,
lof = o + b’ (& is the complex-conjugate of e). I"ha\
following list contains the fundumental properties of Bho
10T, :‘s,‘

(Y Hoisin J ag well asin &, then No = ,a\ ’

(i) N(a8) = NaNB. o)

(1) Na = 11 and only if w is & unit. )

(iv) o

J S0 e =00
Nai=1 i a, 'il or 41,
1 S d%ﬁ{]{b\‘iﬂw org.in

(v) If N is primedg J then a is prime in 6.
The proof of { 1) ;'\Bbv]()ua sinee b = 0. To prove (ii
observe that if K‘f’ o + bi, 5 = ¢ + di, then

> (aB) (eB) = (o) (88),

As for 'iij, buppose first that e 1z o unit, Then a1, =0
ap’ = 4 46r some 3. By (i) NaN§ = N1 1, and Va1,
blnﬂ%\“fcx mugt be a non- -negative infeger, .\ a =1, bon-
xeﬁulvﬂ;\u—- L, + 0" =1 sothata = 0or b = (.
l‘hcn a =1, —1,7or —4, and theqp are obviously units,
“This argnment also estabh«hos most of (iv); the rest we
leave to the reader.

Pinally to prove (v), suppose N« 13 prime and ¢ = Sy.
Then Nao = NN+ 18 prime in J. So one of 3 or Nv is
equal to 1, and by ({ili} either 8 or v is o unit.

The converse of (v} is false, Lo see this it is encugh to
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show that 3 is prime in G, for ¥8 = 3 = 9. Suppose

3 = &B. Then 9 = NeNB. If neither « nor @ i3 a unit

Nu # 1, N8 % 1,50 Ne = ¥8 = 3. But this means that

if &« = @+ b7, then ¢ -+ b° = 3; this is impossible for any

pair of integers @, b in J. (why?)

Tn proving that Theorem 1.5 holds for the Gaussian O

integers we shall imitate as far as possible the mer
already given for rational integers \\ 2

TrecoreM 1.6, 7f o end 3 are Gaussian mthﬂrs,,g 7‘ U
2
then Ihere exist two integers w ond p such that 0y

v
o =76+ p, W < ¥3.
- @ AN, .
Constder the number 5= 4 + Bi Ahre A and B we

ordinary rational numbers. C-hobsé rational integers
s aud ¢ such that D

wiww. dbraulibrary. 01=Bkln

A — ¢, Sf‘.thB i<,

This we can always do‘fz:v choosing s and ¢ as rational
integers nearest to Q\md b respectively. Now Jet = =
s+t p =0 -

To show that\\}v < NP obscrve that

— 4

o= 'a’wrm =la—(s+0)8|=|8 E
{‘\1(4~s)+£3—0? =[Bl{{Ad ~s"+(B-03"
\ \I 2 )
\ B 120 "*_': < .8l
i o
M} “-amce 1\* =|p < 'B| = NB, the mequality is cs-
tablished.

Agsanexsmplelet e = 5 — 4,8 = 1 4 27. Then

«_ (-H1-20 3 11,

5 (dxeni—20 5 3"
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sid =5 B = - Takes = 1,{ = =2, 7 = 1—21,
p:'_GHT)—Ll—Qz)(l-}-Zz) B—~¢—5=
Then

5—i=(lL—2) 1+ 20—

and ¥ {(—4) << N(1 + 29).
Let the reader show by an example that, in contrasi t;L:\'
Theorem 1.1, = and p are et uniquely determined,  ¢N\M

THEOREM 1.7. If w is a prime and 7| aff, thag | a
or ! . D

D
i ' T g0 e
If 7, a we are done; 2o suppose = 4 «., W& Qlall prove

that =, 3. \
Dy Theorer 1.6 we can find 5 and ,o’s@ha,t
2\ .
a = dr + ) Np < Na.

Moreover Np = 0, for ()tll(:l"\gjﬁjew,o = 0 su that 7w,
contrary to assunption u?«dnb@dﬂiib\rmjioi\}grm

Cemnsider all integers in {r which are different from wm
and are of the form a:} »i— . Call the totality of them 7
p= o — w8 an mf.f"g@l in 7. Bv property (iv) of norms in
(r, every clement BCT'TMA norm at least equal to 1, so there
must be one oi\h( oy = af <+ mge which is of least
positive nolm.,i\o\\ p =« — o is in T and has norm loss
than N “31{150 ~ iz of least norm, then also ¥y < N+,
We q}w\\‘ Alext that « iz actually a unit,

(Jiwjne g and ¢ so that
\ " T = By - F, NE < Ny,

\ } bmceg”  — Oy = — Haky + 7m) = al(—#%) +

(1l — B, N = 0, for if N¢ # 0, then { would be an
clement of 7" of smaller norm than y. Bo ¢ = Oand 7 = 4y,
_\ = N8Xy, One of #and ¢ is a unit since 7 1% & prime. But

f N9 = 1, then ¥r = Ny, which contradicts No > N,
So ¢ 15 noft a unit, which means that v 1s.
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THence v = aky -+ 7 is a unit. Now

aff -+ wfn = v8.

Sinec 7 | af by hvpothesis and 7 | w89, then alzo = |+,
80 43 = 77 for some ¢ in & Then 8 = #=(r/y) and ¢ ' 3,
for 'r/"y 18in . \

To prove that Theorem 1.5 Is valid for the integers of 1
we proceed much 43 In the ease of the rational i11t£*g{\1<
If o 12 not a unit or a prime let & = oaey , where Ny > |
Neoo > 1. Repeat this procedure for o and e, a,nd cohtinue
it. It must stop sometime, for otherwise Nw\wuld be ihe
product of an arbitrarily large numhep of factors each
greaterthan 1. Soa = oy -+ 7, , whesddhe #; ure primes.
If also @ = ¢ --- ¢, where the of dre primes, then by
Theorem 1.7 o1 must divide onepefithe =; , say = . Hence
& = 7.6, where ¢ i3 a unit. Ehen

\\:w\\rgd)araulgbl‘ﬂrye{ggg in ..

We can now complate fhe proof as we did for .J,

It remains ﬁnaﬂ( t0 cetablish the still unproved state-

reents about H paade In the preceding scetion, namely that
+1 are the on\[‘y unity; und that 3,7.1 + 2 \/-—o,l -2
v/ =5 are. prﬁne numbers in Jf.

If o 2% + b /=5 define Na = ar = o* + 50% As
b(forp\\ ((xB\ Na¥N8. aisaynit if and only if ¥a = 1;
th('\{n oof ;,09Q as in the ease of the Gaussian mtooels.

But o' 4 50" = 1only when b = 0, a = £l 800 = L1
soare the only units in 4,

\'"\ “ Toshowthat 3isa prime, suppose 3= 73, where neither

a nor § i a unit - that is, Ne = 1, N8 = 1. Since 9 =

N3 = Na NG, then Na = N8 = 3, 80 &° + 5 = 3.

If b = 0 then a® + 55° > 3, g0 b must be zero. But then

= 3, which cannot occur for an integer  in .J. Similarly

if 7 = a8, Now 2 1, NB 5% 1, then o + 5b° = 7.10 " 4 0,



THE GAUSSTAN INTEGERS 11

= ) then o 4 36 > 7 Ho either b = 0,¢° = 7, which is
lan()bSlblb, or b = =1, ¢ = 2, which is also Impo.arnb]e.
Thenumbers 1 £+ 24/ ~3arcprime, forif 1 £ 24 —35 =
af, then N(L &£ 2 4/ —5) = 21 = Ne¥NBS. Unless onc of
gorSizaunt Ne = 3 or ¥ = 3, and this possibality
has already becn exeluded. ¢

An additional example of a class of “integers” for w h;(s,[:\ "

unique factorization is valid is given by the set of num.hél’b
o + bo, where w = L(—1 + +/—3). The reader S\\‘b is
interested in the detalls will find them givenin Qh@ﬁtm XI1I
of the book of Hardy and Wright listed in the\wmrrmphv
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CuarTER II
THE GAUSSIAN PRIMES

1. Rational and Gaussian primes. Tt is not difficult T\
establish the existence of an inflnite number of rating (W)
primes —that is, primes in J. The simplest proof, {lmL o
Tuelid, goes as follows. Buppese py, po, - -, p,, ark Thonn
to be prime. Then the wimber § = 3{;&4 ceeopy
canmot have any one of the p, as a fchLUl, gimee ther L
would also have that p; as a fuctor. I‘hon\“m prime factor
of & different from p, -+, pa . Us means that it
any linite set of prime numbers is gl\}n there is 2 prime

different from any of them; so 1here are an infinite number

if there iz at least one. But 2 s Sprime, anid the conelusion
Tollows. W W dbrauhbrany worg.in

Precisely the same pmof i valid for Gaussian primes
provided only that A& can find one prime. But 3 has
already been shmvn\to be a Gaussian prime, zo that &
contains an mf‘bz:(itv of primes. We can accomplish con-
siderably nafey we shall characterize explicitly all the
primes jnyx@dn terms of those in J. In order to achieve this
we shathomecd some material from elementary number
theqd) Aetually we shall prove somewhat more than we
naéd, for the present purpoge. The additional resulis

.j.'fﬂl find application later.

2. Congruences. Tn this section we deal only with
rational integers.
Lel #¢ be an integer not zero. T'wo integers ¢ and b ave
said to be congruent modido m, written
=blmodm) or a=0 (m),

if mi{e — b} If @ and b are not congruent mod m we
write a = b {(m).

7

12

N
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Aceording to Theorem 1.1 cvery infeger o leaves a
remainder 7, 0 < r < | m |, on division by ;m . We shall
show that @ and b are congruent modulo 7 if and only if
thev leave the same remainder on division by wm .

l\‘i ::]- |"\‘ ] I- y »

LET SUPPOSE o\

a=qglm!+r, b=g¢|m|+r 0 <y < |m

N

O

N

vy

Then O

@—b=(g—q)|ml, Emiie— N

so that mi (e — b} Conversely suppose ¢ ?.s\:bs:\('?n). Let
g =glm!l4rb=q¢lm|l+r 0 ANMmn|,0 <
i< i, Then AN

a—b=1(¢—¢)|mKVy - 7).

Sinee | | dividesa — 6, | m | di;ﬁdes’;- — . But =t ! <
r— ¢ < I| m |, 50 Nwﬂh&ﬁmiﬁﬁa}%@gﬁlble by fm|
unless ¢ = 77 N

"The following properi.féf}vnf congruences will he used
frequently, K

() Ifa = bhelh)) thend = a  (m).

iy If ¢ = Q\‘m) and b=: ¢ (m), thena = ¢ (m}.

(i) 1f ¢ =B (m), then ka =kb  (m) for any integer&.

Gv) If @by (m) ford = 1,2, -+-, n, then

?\w |
eFrot oo o= By + by 4 o+ + ba(m),
O

s+ Gy = b oo By ()
'\‘:\a “Ihe lust purt of (iv) is the only one of these properlies
N/ which s not quite obvious. We verify it when n = 2
the general case follows by repeated application of thig
one. B (i)

{{1fla = E);aa(??l), I?La-'). = blb?.('m')}

so that by (1), gy = hilb(m).
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It is not true that if ke = kb{m), then o = b{m). For
example 3-2 = 3-1(3), but 2 £ 1(3). In order to state
correct converse of (i) we introduce the notion of the
greatest common divisor (h, k} of two integers A and 7; it is
simply the largest positive factor common to both A and /.
Note that if ¢ is gny common factor of & and k, then\
¢ (h, k); this follows from the fundamecntal theorem( o{'
arithmetic. We can now state N

N/

(v). If ka = Eb(m), then & = b{mod ;"), whote d =

(k, m). In particular, a = b{mod m) if & and mm(‘ relalively
prime, that is d = 1.

Now suppose m to be a positive dnteger. Sinee every
integer leaves on division by m oué”of the remainders
0,1, .-+, m — 1, every integés i congruent to exactly
one of these integers modulo w.,"Any set of integers such
that e\-'ely“’ﬁ'fﬂéﬂgf‘ af{"%&ﬁg&*ﬂ%&ﬁ; %o exactly one of them
modulo m is called a Gomplete residue (or remainder)
system modulo m. It Tollows that a set of integers is n
complete residue s¥ftem modulo m if and only if it consists
of exaclly my '{ftefgers, no two of which are congruent
modulo m. 5,

Toropel 2.1. If a1, a2, -+, aw form a complete residur
system\{nodulo m, ond if (¢, m) = L thenaay , aa:, -+ - |, 20a
”}Sgrm such a sysiem.
\For if aa; = aay(m), then a; = a;(m), by property (v)
SNahove.
'S
4 \"4 . K ?' N .

N \ IuroreM 2.2. (Fermal). If p 4s a prime and (a, p) = 1
then 6" = 1(p).

The number 0, 1,2, -+, p — 1 form a complete residue

system modulo p. Ilence 0, a, 2a, -+, (p — 1a do also,

by the preceding theorem. Now each numhber on one list
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is congruent to exactly one on the other. Omiiting 0 from
cach list, since the zeros correspond, we get by (iv)
a2aq - --ip-Na=12.-- (p—1) (mod p),
or
(p = DI = (p — 1)! (mod p). ,
By {v) we can divide out (p — 1} from cach side tQ D
chtain the conclusion.
CoroLLARY 23. If p is a prime, then ¢© = a(}i) fm-

any nieger d. RS
TuroreM 2.4. (Wilson). If p is ¢ prime, theely — 1)1 =
—1{p). AN
Ii p = 2 or p = 3 the conclusion isp@:ious, #0 suppose
p >3, P\
Let 4 be one of the numbers 1, 2 — — 1, and let us
examine the equatlonmﬁb%ﬁ)abﬁﬁﬁ JJQFD(G p =
If » goes through the valuess; 2, ---, p — 1 then by

Theorem 2.1 az goes through a complete residue system
mod p, excepting 0. Hepte there is one and only one z
which satisfies the odugruence

Then the numbét.a 1,2, , ¢ — 1 fall into pairs such
that the produci; of any pair is congruent tol modulo p. If
the members of a pair are equal, say to @, then o = 1,
-1 —-{)\p| (6 — e+ 1,s0p|{a+orp|la—1)
p cannst) 'divide both @ + 1 and ¢ — 1, since it would
div lde\thezr difference 2. Hence ¢ = 1{p) or ¢ = —1(p).
S{twé 1 < a < p— 1 wehave that either e = 1 or a =

sp‘ _ ].
\ With the ¢ — 3 numbers of the set 2, --- , p — 2 we
can form the preduct of the 3-2—— pairs to obtain

2.834.--(p—2y=1 {p).
Then (p— 1N = p—1= —1(p}.
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(‘DROLLARY d5 If p is a prime number of the for
A 4 1, then p i (1 4 1), where n = (2m)!
(_-Ullr:_ldE‘-T the fwo sets of numbers
—1, -2
qm, dm — 1, ---, 2m + 1. ’:\"
o\
Each clement of the lower row is congruent mothﬂra P
to the clement of the upper row divectly abov, e.,‘snibe their
difference iz p. Hence w\
Imldm — 1) -~ 2m 4 1) = (1) (=3PN" (—2m)  (p).
SBince also (Zm)! = (2m)), mulhplma@?vleld-

(4m)t = | (Z m}e\‘ {31,

— N

T

Let n = {2m)]. Bince ['-i-m)l,'% (p — I}t = —1 by Wilson's
ikoeorem, it \ﬁ@ﬂ@ﬁbﬂﬁuﬁ-i}}f@\ﬁiﬁ@rg- i),

TaroreM 2.6, If ps @ prime and ¢ and b are inlogers,

fhen R
\\\' o' 4 0w (g A DY {mod p).
By anéiltzr}r 23, ¢ = clp) for any infeger e, Lot
¢ = a%h, Then (o + b)Y’ = a + b. Bub also o = ¢,
b

" =hand from these the result follows.
{\ 3. Determination of the Gaussian primes. We aure now
\\ “in & position to classify the Gaussian primes. The situation
”\ “ s somewhat complicated by the fact that a rational prime
A cunt cease to be a prime in G—for example, 5 = (1 + 24}
{1 — 221 part of our prablem i3 to decide which rational
primes are also Gaussian primes,
It is convenient in the classifieation to cull fwo Gaussiun
integers associafes, written a ~ 3, If «l8 and 8]« -
that is, i @ = 3e where e 11 o unit.
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Trmorey 2.7, The Gaussian premes foll sno the following
three elusses:

1. all positive vatsonal primes of the form dm + 3 and
Ihci?' assueiates 1n (7

o e number 1 4 4 and iz associnles;

3. all didegers associnled with either kS + 9'3; or 2 — gl
where w > 0, y > 0, x is even, and z + ¥ s a mz‘w?m% ’
preme of the form dm + 1. ‘~

Before proving the theorem we illustrate its appifcatiun
i deiecting Gaussian primes. Let p = 3. This}ig ‘In the
first of tlwe clazses mentioned in the theorergh\with m = 0;
henee 3 1s & Gaussian prime, Let p = 5, Thisds of the form
dre - 1 und s = (2441 (2 — ©),502, é&z 2 — ¢ and their
associntes ave primes, by the third paxt’ of the theorem.

To nmw the theorem we show”ﬁrst that any prime
T in G divides emc‘r}wwméblpmﬂrhﬁa& wakignal prime p.
Vor Nor = 77, 50 = P Ny LBL No = p1 -+~ p bo the
decompnsition in J of“\n‘ “into positive pl‘]IﬂBQ Then
®{ps -+ p,. By IheQiem 1.7 = divides one of the p;.
Hoor divides so Q \positive rational prime. It cannot

divide {wo, p andvg. For by Theorem 1.2 we mn find
mtional intcn*ere. 7 and m such that fp + mg = 1. If
iy, o g ihm 7| 1, 80 7 is o unit, not u prime, eontlal\'TO
]n pothe;@h

HefteaAve can get cach prime in 7 once and only once
by, Carlsidering the factorization of all positive rational
;Plﬂme treated as clements of G

\ * \Lm’ ](t 7 be a pr]mc and p the pos;tn' prime for
which = ip. Then Nz | Np. But Np = p, since p 18 a
rational intoger, Tlence ’\ x = por Ne=¢ Ifr=a+iy

thena’ 3 =pord+¢ = p
Divide p by 4. According to Theors\m 1.1 this leaves
a remainder of 1, 2 or 3. We consider the three cases

separately.
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Case 1. p = 3(4). As stated just above, Z4y =por
z* 4 ¥ = p’. It will be shown now that the first of thesc
two possibilities cannot oecur. Since p is odd, one of x
and y, say z, must be even, the other odd; otherwise the,
sum of their squares would be even. let x = 2a, ¥ =

2h + 1. Thenif 2 + & = p, O\
x+y==4a,+(2b+i) O
= 4(a® 4 +b)+l»— 1(4%
whereag p = 3. w\

S0 in this case © + ¢ = p°, and\N#’' = Np. Smce
7 |p, p = my, where v is in (. Then NQ\-‘- NwNvy, Nv
¥ is a unit, and p ~ =, v

"This aceounts for the first paxd of Theorem 2.7.

Case 2. p = 2(4). In this eade p = 2, smce this is the
only even pﬁmﬁdﬂ%ﬂhlﬁuﬁ‘]{lol-g i) (1 — ¢),and 72 SU
rj(l+dornx|(d - o But N1 + 1) = N(l —g). =
a rational prime. We' showed earlier that if Ne is prlm(
80 i o, Then 1 —l—\ga.nd 1 — ¢ ave prime. Hence v ~ 1 41

orw ~ 1 —*Q\\Smcel +

Z=z,1+a~1~a,a.ndthe

gecond part of the theorem 18 done.

Case o p = 1{4). pis of the form 1 4 4m, so that
Co&ol‘[‘ary 2518 appllcable and p | 7" =+ 1 for some rational
,@seger noButw’ + 1= (n+ 4 (n — 2 and =|p, s0

| (n 4 4) or | {n — 9). But p does not divide n + 7

. , 1. .
or # — %, for otherwise one of ¥ o = ¢ would be a Gaussian
P

integer; this cannot be, for 1/p is not a rational integer.
Henece 7 and p are not associated. It follows that = = N'p,
g0 # + 3 % p’. From our earlier remarks, this leaves
only the alternative 2° + & = p.

Then 7% = p. Moreaver # = z + tyand & = © — 1y
are primes, since No = N% = p. They are not associated,
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for otherwise x + 4y = eflx — y), where e = 1, —1,
ior —i.Jfe=14 =0 2° = p, 50 p is not a prime.
Ife= —1,z = 0,5 = p, and the same conchusion follows,

If ¢ = 44,z = 4Ly and pis even, All of these eventualities
are impoessible, so x 4 4y and = — dy are not associated,

Finally, since 2° -+ %° = p, one of # and y must be even, .
tlie other odd. This completes the account. \ A\

4. Fermat’s theorem for Gaussian primes. It iy now
reasonable to ask whether the theory discussed 30/§2 for
rational primes has an analogue for Gaussid antegers.
This is the case, and the theory of conghuences and
complete residue systems can be carried)ever. Since we
expect to investigate these things }a\ttrl for far more
general classes of numbers then tho ‘Gaussian integers,
we shall only illustrate the kind ofthing to be expected by
proving the analogue of Tvrm L;Pia LSRN

By a =5 (modv) ora = B{v) we shall now mean that
v 1 (a — @) in . Let = hea Gaussian prime.

Turorem 2.8 (Ma})gue of Fermat's theorem). If «
and « are rdahvd?\}}mme (that is, have no common factors

cxcept unils), ifg,‘@:@;
"\ o= 1(m).

Tet bf\ fh(‘ unigque positive prime p, diseussed in the
pmot$ the preceding theorem, for which = | p. There are
‘rhfo(z cases, corresponding to the three part% of Theorem 2.7.

Case 1. p o= 3(}) In this case Now = 2’ + ¢° = 9%, s0

\ ’we must show o = 1(x}. What we shall prove 18 that

" = a(p). From thlS the result will follow, for
= p, 2l —a), wiald -1

som! (a1 = 1), since v J e
Tet @« = 1 + im. Then o = I7 + "m?(p), by the
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argument used to prove Theoremn 2.6, Since p 13 of the
form 4n + 3,14 = —4 Also " = [ " = m by Corollary

2.3, 80
o' =1 — im = alp).
O\
Similarly A )
T— a(‘p), ”\’:\(\“..
50 that bt
o =a" = alp), :‘;s ’

as asscrted. ' W

Tase 9. - \} . . :

Case 2. p = 2(4). In this cage p = 2Nd'that = ~ [ + 4.
We may assume = = 1 + . Since A= 2, what we roust
prove is that "™ = a = l(q")\cr simply that [ - ¢
divides a — 1 when 1 + 4 m;d’ a are relatively prime.
Since 1 + td Bfﬁ‘ai it s’aﬁ?ces to show that if « iz a
Gaussian Thteger 80 1 & ‘;«

ale ml‘) ale — 1)(1 — o)

8 — = - @ - @
= >
leta = a -%\’Ql\ 7/ Then
3 = ;{gqi%a—b — b+ 2ab)
o\ F(—a 4+ a4+ - b+ 2ab)t

Q/ = uln — 1) — Lib + 1) + 2ab

—a a4+ — b+ 20
= —afa — 1)~ bh — 1) + 2ab

are both even. Henco 8 i a Gaussian integer.
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Cuse 3. p = 1(4), Now Nor = * + 4° = p, s0 we must
show that o™ = 1(x). Since = | p and «, 7 are yelatively
prime this will follow if we can prove that &® = alp).

Let o = 1 4 mi. As in Case 1, o = I" 4+ 'm"(p). <\
But p is of the form 4n + 1, so that ¥ = { and of =

f = #m = a, as required. {\(}:}
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Cuoaprer 11l
POLYNOMIALS OVER A FINLD

1. Divisibility properties of polynomials. By o numuler
field F we shall mean a collection of real or comipled
numbers with the following properties: f o and 3 M\[onﬂ

to F, 80 doe + 8, ¢ — 3, af, and also 4 Ty Id 97? U Hiviry

number ficld F eontaing all the ralions¥ n}lmbon For

fa70isin F}SOP-— = 1; thmefq\cjl =14+ I
3 =142, ---, and lel the p0'~\t1\e rational intogers
arc In F. But 0 =1 -1 musi b(‘ contained in F, and
hence also 0 — }] cre T i$oany rational integer. So sl

rational mte;:erarﬁe in af; Aifce all quotients of rational
iniegers not zero also bp}@ng to ¥, our statement follows.

The reader can varify that the {ollowing gets of numbers
form fields: the set R of all rational numbers, the set of all
numbers ¢ —|—~1{\\/§ with @ and & in 12, the sct of all real
numbers, thesel of sull complex nurgbers. Observe on the
other hand;that none of the sets J, G or H considered
in t-hgo{arlier chapters form a field, for they do not contuin

SQE of rational numbers,

OB 1 abstract algebra one defines fields of a more gencral

) Kind; in the present book, however, a “Held” will always
AN

mean & “number field”.

A polynomial of degree m, n = 0, over a feld F iz an
expression of the form

ple) = @+ ax + - F aaz™ !+ ans”
where all the coefBeients arc in F and a, 74 Q. The product of
two polynomials plz) and g(z),
qlz) = b+ b+ o bpa™
22
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i1
pladgle) = ¢ + aw + <o+ e,
where
o = gl O\
0~ ¢
¢ = toly + iy A
o
e . « \J/
o, = aph; + iy + - - 4+ el 4 ey (\f"
P ,,':.“ ¢
AN
and k= m -+ . \J

It iz ghown in analysiz thal a polym)miaJ\cﬁ degree n > 1
. . . " w
ean he factored uniquely into the form 7>

W

pa) = mlz — m)(e — rNV (v — 1),

Wh{frq the 7; are numi\ﬁ'ﬂgw\l\é}%lg&.lﬁ%e& j}Bng,i?Eong to the
field ' containing the cocfiieients of ple). For example
plz) = & + 2o 4+ 3 1s af’@olynomia.l aver the field B of
rational numbers, bul;{iu this case v = —1 4+ v/ —2
7 = —1 — +/—~2amd these are cerlainly not in R.

The numbers %5, 7 - | 7, arve called the rools or zeros of
the polynomighy It follows from the unique factorization
just mentighéd that o polynomial of degree n > 1 has at
most » ﬂistinct roots. It g of course possible for seversl
or :1%11'}%}10 roots to be identical. For example

"

"\

R\
A\

— 33—t ={e =D —1D - 1.

\x:\, A polynomial over # 1s saidl to be prime or irreducible
\.’ over Fif it cannot be lactored into a produet of two or

more pelynomials
plr) = mlaipele) -+ pela),

where each p(2) is of lower degree than plx) and is itself a
polynomial over . For cxample 27 + 2¢ + 3 is irredueible
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over B, although it is reducible over the field of all complex
numbers.

We shall prove that every polynomial over /7 ocun he
factored into the product of irreducible factors over £
and that the factorization i3 unique to within ovder and O\
units. A wedt is o this case simply 2 constant- that iy,
number from ¥. Polynomials are relatively prime it l e .,\
have only units as comnion factors. « )

The proof is not unlike that of the fundamental Ihem e
of arithmetic, and we begin by (“-\fdbhthu Q‘sulf‘% whieh
parallel the early theoreme of Chapter T80

Leataea 3.1, Let flx) and g(x) be polygeinials of degrecs
and e respectsvely over o field I', anddstppose n = m. Then
for a switable number ¢ in F the (‘-t;gbxcieeion.

WWW dbrauhﬁj{l Ear‘y &% el lnq( )

13 identically zere or is o po?ynomsal of degree less thaw 4.
Let f(xr) and g{z) bhe Hefined respectively by

fx) = rz\r +ozt P
q(.a')¥ bu, ;™ + L?n 1L%_l + -t + I.F._) 3
where aﬂ 'aéx[), b # 0. Define ¢ = 0,70, . Then

(\"\-v {.'1,” "g(x) = (apz” o) — g 20, " 4,
ki
~=,n that the term in =" cancels. It is possible for all the
d \, terms {o mncel but in any case only terms of lower
\/ degree than &" ean survive,

In what follows il is convenient to include 0 as o poly-
nomial, but we give it no degree. The notation flx) =
will mean that f(z) is the polynomial zern. A constant notb
zero satisfles our carlier definition of 2 polynomial of
degree n, with o = 0.
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TuwoneM 3.2, Let flz) and glx) £ 0 be polynomials
over K. Then there are polynomials q(z) and r(x) over F
sueh thad

Jx) = qlz)glx) 4 rla),

where lx) = O or #(2) 48 of lower degree than g(x),

HELEART 1dmhcallv zero or of lower degree than g{a) we\\ K%

cun. mk(, giz) = 0, and r(z) to be fx) itsell.

Now regard g(x) ar fixed, of degrec m. We shall }m’h ¢
the theorem for all f(z) of degree n > m by 1&(}{1(%1011
Suppose the conclusion of the theorem to hedmie for all
fi) of degree between 0 and # - 1 1@\115_1\«:. By the
Firy — ex™ Mgla) = )’{f\T

is identically zero ov of degree at »m(;‘-,t. ¢ — 1. By the first
part of the proof if fi{ww=. dBl;ﬁulth‘errylurgnductlon by
pothesis if fi(x) 2 0, we hzweﬂ

filz) = 1(1}J(l‘ -+ r{xd,

w

where r(x) = 0 OR\KQ’]' is of lower degree than ¢(x). Then
T.): b file) + C:,_:n--,_-;g )
) ) n—rn . N
\ ’\ lea""™ 4 guladlgla) 4 o
\w = qlelgle) -+ i),

femima,

md’i}le induetion g complete.

=\ ,,J"H} onbsM 3.3. Let fix) and g(x) be non-zero polynomials
\.Or.u F, relatively prime over £, Then there exist polynomiols
sfat u.'f:rf. to(x) orer Fosuch that

1= so()f@) + ha)gl).

Conzider the set T of all polvnomials of the form
slaif(x) 4 Hadgle) = 0, whore s(x) and {({z) have co-

t

N

N
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efficients in #. Choose In T o member diz) of lowest
degree. dfx) may, of course, be a constant not zero. Yo
shell show that it actually is.

By Theorem 3.2 we can find ¢(x), r{x) so that

rx) = fz) — q@@)d(),

where r{a) = 0 or r(z) 13 of degree Jess than that of Q’l
The second of these possibilities i3 excluded, for ﬁ’ T
obviously in 7', and no polynomial in T is of lowe1 Segree
than di{z). 8o r{z} = 0. Henee f(z) = q(.b)d(\)k Similarly
glx) = qiz)d(a) for some polynomial ¢(¢I\Since f(x) and
gt} are velatively prine, de) must be\m.cunatcmt i 0
Since d is in 77 it has a representationy

d = solz)f{z) +; ffwlglx).
Divide by d, and the theoremys established.

A pol}rloﬁﬂlal dpraylibre 5?”‘R{glﬂdmg coefficient .. is 1.
By use of Theorem 3.3 it dasy to prove the following two
theorems which are ananerLh respectively to Theorens

1.3 and 1.5. The, umadm will find it a useful exercizge to
supply the dot&é@ of the proofs.

A o
SAD
w®

TrroruM3yt. If plz), f(x), glx) are polynomials over
F, plz) Weducehip and pla) divides [(w)g(x) over I, then
(B) dg{m&kns either f(x) or g{r).

N\
JABEOREM 3.5, Any polynomiol plz] = ax" + - - +

Javer 7 onot zero or o constant ean be factored into a produed

~\ p(z) = aumlz) -+ plz)

where the pi(x) are irreducible monic polynomials over F,
determined uniguely exeept for order.

2. The Eisenstein irreducibility criterion. In this section
we shall present a simple and usefnl test for the wreduel-
bility of & polynomial over the field & of rational numbers.
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A polynomial with rational integers as coefficients is
primifive 1f the cocflicients have no factors other than 41
coromon to all of them. The following theorem is of great
mportance. 7\

TnzorEM 3.8. {((Fauss’ Lenone). The product of primitive A .
polynomials 18 primitive. S )

letap +@ma+ - Fox"and b+ s+ - 4 g™
he primitive, and let ¢ + ez 4+ -+ + ez’ be €hdir
produet. Assume the product is not primitive. Theh all
the ¢; ave divisible by some prime number p. Tebgs and b;
Br the first coeflicients in the two origina{polymmials
(note the order in which the terms were \\;I‘i?b&ﬁ) which are
nol divigible by p. They must exist, fors\the polynomials
are primitive, and so not all their _pleflicients can be
divigible by p. AN )

Now, by the formula ﬂg}vi‘figjfﬁ%ud’{&}faﬁ?tg{-:g'f)?)lynomials,

ciry = (oobory + - G.i—l?jy:lio + ad;
.i“’y\ + (acabia -+ 0+ i)

Buit ao, @y, - Q-g_\‘[, by, buy -+ by, and ¢y are all
divisible by p. So ;0 ; must also be divisible by p.

Since p iz piutie, p | @; or p | b; . Bat this contradicts the
choice ()f’,q;‘}fl.d b; as coeflicients not divisible by p. Thus
the asglumption that the e; have a factor p in common is
erTonléous, and ¢ + ez + -+ Fext must be primitive.

s ‘an example, consider the primitive polynomials
\mﬂf“% 3 and 3z° 4 7o — 11. Their produet
92t + 74— 22 4 21x — 33

i eertainly primitive.

TuaroreEM 3.7. If a polynomiol with rational integral
coefiicients can be factored over R, it can be factored into
polymomials with rational tnfegral coeficients.
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For example,

25 19z + 35 = 2z 4 1) (e +

[
=

but also
20° + 19x + 35 = {r + 7)(22 + 5.

The proof gees in two parts. First note that any pufx N

nomial flx) 2 0 aver R can be writlen undguely n fhf’ { r,)\m
fa) = ef*(2), Re

47

i/ )
where f*(x) is primitive and of 15 6 posttive mt\i‘rx.\rtai nalir,
For suppose that

i—1
fa) = a” + aud’ +\~ + a
where the a; are rational numbers Vie can write g, =

where ¢ ig ‘KH@"@'%“Z&%'c’%‘iﬁh‘f*hﬁ‘llfdolu)mlndt01 of all rhi‘.

fractions ¢, . Then 'fm

N
N N

flay = - (l{\z —{— by "8 4 - Byl
’&
Noww faetor O‘I.Lt\ ‘(he axpression in parenthesis the largest
positive ta(tm scommon to all the by . Then what remains
inside the pm entheses we call f¥(z), what is outside ¢ .
(,1(':11"13\%} > 0, and f*{x) is primitive by the very manncr
in \lp(‘h it is defined. As to the uniqueness, if

?
™S

AN J@) = eif*(2) = epla),

N where ¢; and ¢ are positive and f*(z), p(z) are primitive,
then P*(2) | p(x), p(s) | F*(2), 50 f*(x) = s plx), sud the -+
sign must prevail.

We twrn to the proof of the theorem. Suppose (i} =
glojhle) over B, where fx) has integral coeflicients. Then

eif*(z) = e c)el*(x),

N\
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wiwere each of f(), gldh{x} has been writlen in the form
inst cHeeussed. So

Flr) = e f* () = (eeaig* (¥ ().

T3, by Theorem 3.6, g*(x)h*(2) is primilive. Moreover

the decomposition of f(z) in this form is unique, so f*(x) = "\
(L) and L)\
fla) = e (a)* (). e\
N/

But flx) and f*{a) have integral coefficients, and{™g) is
primitive, zo ¢; must be a posilive integer. C\h{? proves
L theorem. O

Turores 3.8, (Bisenslein's  irredyclitity erilerion).
]

Lei p be a prime and f(x) = o + agtQh -0 a.7" a
pudunomial with infegral coefliclentsSydh that

B{ @, pa:/au : \J{J\)I\y.{;lb’:]:g{_lﬁbl‘%"}‘gg".o.l'.g..il!\l' — I
Ther fr) is irreduedle ol
I fla) factors over ﬁt}f‘then Ly Theorem 3.7 it has
Giefors with integral {ﬁicﬂicienfs. Suppose that

Jley = (b’M\:KMZE‘ ) (C:.-..‘I.‘-;; 4+ o+ m),

where Lhe b;;,::.(::,‘ are integers and m + 7 = », the degree of
Flx). Singdad = byeg and p 4ag, not both b and ¢ are
divisibleby p. But plas, so pll or p . We may
;w:up}\éa\e’fhat plen, prbe.
«,\;ﬁbw ., = bneeis not divisible by o, 80 ¢ 1s not divisible
.“\‘1”;;3" it cither. Congider the hst of coeflicients en, 60, -+, ¢ .
“\There must be a smallest value of ¥ < k& such that ¢ i3
" not divisible by p, but o, &1, -+, ¢ are so divisible,
By the multiplication formula for polynomials

ay = f}uC,- "1" blC,-._l + R —;-' brCU .

All the terms on the right except e, are divisible by .
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S0 a, & not divisible by it either. But by hypothesis only
one of the coefficients a; is not divisible by p, and thal one
isa,. Thenr = % Sincer < fi,n <k Buth + m = =,
so 7 = k. The two inequalitics can be recouciled oniy
Ha =k

Hence one of the proposed factors of fz) necessanly
hus the same degree as fiz). Then f{z} must be irreduc Lb\f‘ N

Ag an application of Fisenstein’s eriterion we shall fgﬁ\\ ¢
the frredueibility over i of two important pol»nqmmm
First observe that a polynomial flz) is n,rednmhl{\ 1_'
and only if f(z 4+ 1) is irredueible. Tor flx X 1\_ gl

if and only if f{z) = glz — LAz — 1).
Lot p be a prime and consider th 'sbucalled egrelotamia
polynomial \ v
— 1 \V

a1 ?"‘lv .
@ dbr aulibr ar—lzprg m+ + 1.

Thig is irreducible over I XL

(& -+ 1 ?Ll,w+1rux

(= 4 +~1J—1 Y
18 alzo. But the\Lﬁttel is of the form {why?)
V'fl+puH ) + b,

and the&ricduc;ibilit}r follows directly from Theorem 3.5,
x&i}ﬁother important example gonsider the polynomi
W\ AT

WY
e

E
~

O
"4

_ xpl'p---ll‘ + xﬂf(n—ﬁ} o 4 PR + 1.

x? — 1]
\.' Replacing = by » + 1 yields
&7+ ple),

where g(z) has integral cocfficients and final term 1. Onee
again Fisenstein’s criterion shows that the polynomial is
irreducible over B,
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TrroreM 3.9, If pis a prime nwmber then the polynomials

wn—l_}_xpﬁ_{_‘.. 4+ r 41

ahrf
ip—1i nip—ii z
xI‘J\J’? _1_2:1; J_l______}_:r_JJr_l :*\
ave irreducible over £. O\’
A\
. . N/
3. Symmetric polynomials. Let &, .-+, @, denefe
. . . . !
iwlependent varviables. By a polynomial in @ ,/50 /@,
27 £ )
L "4

vver Fowe mean a finite sum of the form

{}[TL, Tty :Cfi) = Z iy dyeeiy

Tpafaarrain

R4

whete the a’s are elements in 7 aid)the exponents are
non-negative integers. For examplendy; + 2av5 + Sris +
iy 18 o polynomial in o ',di?{ﬁh fibrary.org.in

A polynomial glag, - ,.351;3 is symmetric if it i3 un-
changed by any of the midpermutations of the variables
T, -+, ¥n. For example, when 7 = 3 the polvnomials
a4+ e+ 2 zmc.l: :I;ls@g? Tels  Tywp Are symmetrie,

Now let z be, Sﬁ{i\fi.nothct‘ variable, and define

RN

7

E §

J(2) =g a(z — ) -+ (2 — @)

\ ¥4

£ ) F
O — g e - (=1,
'S X
It is«&%a’if_v verified that
R\

,\\'{‘ @y = a1+ da o - Ea
a \¥Y
\/ Fo = Tyt + x@z oo Xy oo Taa®

4

v, = sum of all products of ¢ different x;
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The o are called the dementary symmetric [nnelions
My, v, E

We shall asswme without proof the following standard
theorem concerning symmietric polynomials. The defuils o
can be found in most texts on the theory of equations, [k
example the boolk of Thomas listed in the bibliographion

TrroruM 3.10. Keery symmetric polynomial z'n,:n O S
over a jield I caw he written as o polynomial Qa,'er W n ihe
elementory symmetric funclions oy, » -+, o I,Q.‘&e coeflicienis
of the first polymiemial are rational iniggees, the sams is

frie of the second. O
Vor example, let # = 3. Then .\\\
¥4 et o

= (B (H:bl"a‘ulrﬁr a@ﬁf—%ﬁﬁg + zxy 4 L)

\ 1 :
A = g7 — 2

N\
s','
.3

Trequently we altall use the following ecorollary of
Theorem 3.10 1,4{‘11 2 than the theorem 1iself,

TaE omm\?h} Let }C(i) be a polynomial of degree n ovee £
with rootsFryry , - - CLet plzy, -, 2 be a symmciric
poi’ynomw( over I lhm plre, «v, 1) i% an clanent of #.

-\Q%l example, let f(2) = 22" — T2 + 7, 1" = R all(l

v f’
R

w4
#

\g Xy, k) = 23 = 23 Then the roots of Ffla) are ‘—-_}"

."\" and

4\

\;

plry, 7o} = (T—T_V 7_1) + (‘__“- \/7'17)‘ _ 2

4 4 A7

which is u rational number, as predicied by the theoremn.
To show that Theorem 3.1 {olows {rom Theorem 3.1}

s not difficult. By Theorem 3.0 ey, -0, ) s 4

polvnomial over F in g, a2, -+ o, This means Lhat
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P, e, Ta) 18 A polynomial e Ao, e A
7y ,_;_ cee, myPe v+ e . But these expressions are simply
the eocficients of f(r.," ‘i, 1f we write

Siah m= g (" = bena™ T baar™ T — e 2 ),

ataid all the by wre in F,
An important eonsequence of Theorem 311 g L,b&
fotlewing corollary.,

CoroLvary 3.12, Lel f(z) and g(vl,) be pOfi‘,’nomiﬂléﬁU T
dield Foond letog, v a3 81, ~-0, e be Zhez\r\ne'speatue

souts, Then the products N\ 4
& oon \\'\
mf2) = [T 1T (@ — o <2}’)
=l i=1 ( \

s\.'

£
holz) = II,E legu?bl ary .org.in

are polynomials 1n @ with {Qeﬁ" }J?f’nfs in F.
We pan wriie 2
@) = afl> aﬁ(r ~ ag) - @ —
where ¢, 18 thg\lt;%!mg eoefficient of f{x). Then

> Mk

; oo s
f[\;g'. — d) :0\\0/

G~ — B~ e — B) o (- s — )
QO :
*‘.’;\ = G, 1:11 (& — a; — 84

Q h HEe

&
oy leh = T fle — 82,
=1
The product is a polynomial in @ whose eoeflicients are
symmetric in 8, -, 8 . So by Theoremn 3,11 iiz coefli-

S
o\ ®
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cients are in /. I we divide both sides by o, it follows that
the eoefficients of k(2) are In I, since £ is a field.
Te prove the sccond part of the theorem note that

Qoo
$o L™

i

i C
ﬁ?f(g) = a.(x — a ) — f‘fﬂ%

and thercfore AS)
Tx 2 LR \\\
dine) = 1 17 B,
=L W0

The remainder of the proof goc uch as before.
www,dbrauiibra{;&g@-g_in
‘\}*
N
NN

3



Craprer IV

ALGIEBRAIC NUMBER FIELDS

1. Numbers algebraic over a field. Let F be a number
fiekid. A number 212 said to be algebraic over Fif 1t sutisfies a, i\“\'
poivnomial equation o\

9
(I._n__nn + aﬁ__lmri*—l + e + fg = 0 ":\:S

with coetlicients in F. # need noi belong to F. ‘Fuf\eﬁtample
A/ 2 salisfies ©° — 2 = 0 over &2, but 4/2 is\tiwivin A.
Suppese now that # is algebraie over .6,,‘3[1(1 consider
11 M - : 1. 'X.
all polynomials over F of which ¢ is {1601, Let plx) be
one of lowest degree. Since we ean always divide out the
leading coefficient, we may assunle” p(z) to be monic.
Then plx) is called a ITERE, jac}%g,gmi?ﬁgﬁhfl j _gﬁ‘%%er . plx)
i clearly irreducible; other®ise ¢ would salisly a poly-

NS

nomial of lower degree. ™8

ToeoneM 4.1, fF gi‘",é:i\afgebmic over F, it has a unigue
minimal pameomiﬂlF\’\)
Let p(x) be &yminimal polynomial, and ¢(x) any other

polynomial os-\‘ei’"F satisfied by 6. Then
o gl = g@p@) + i),

N
wher@&.‘(fit} = 0 or h{x) iz of Jower degrce than p(x).
Lot\pv= 6. Since p(8) = q(6) = 0 we find &(8) = 0. Then

;h‘éﬁ:ﬁ = (; otherwise p{x) would not be minimal. So

Opl) gl ,

Now if ¢{z) were any other minimal polynomisl of ¢
over I, the saume argument shows that ¢(@) | p(z). Hence
plz) = -¢le), and sinee both are monie, plx} = ¢fx),
a3 asserted.

35
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We have proved incidentally the

Corottary 4.2, Any pelynomind satisfied by 6 oier F
contains the minimal polynemial of 8 as a faclor.

CoroLLARY 4.3, If f(z) and g(») arc relaiively privee ovesr ON

F they have no roola i common. A o
- . el e | D R W
For if 8 werc o common root, then by Corollury .1..7-\~[}1C
minimal polynomial of # over /7 divides both fioiind
g(x), contrary to the assumption that they {me no
common {actor. '\'(.”
Cowovnrany 4.4 Aw dreeducibie polynoednd of e n
over F' has n distinet roots. AN
For suppose the irrecducible [J(}l};Q@{nieli Fe) has two
roots which are the same. We canNgrite
) = a-ﬁ(.-g:f,:—}, Py gle).
8 wwrw . dbraulibraryorg. in .
Then, uking the deriyative of each side,

fily = a--n{:v\'% 7' () + 20a(x — rigla),

30 that fu) a &éf‘{x) have 4 root # in common. By the
preceding corollary the polynomials f{x) and f{z) must
have a ¢ogton factor. Sinee f(x) is irreducible, it must
be thajgommon factor, and f(x) | f'(z). But this cunnot be,
sincesl8§a} is of lower degree than f{z).

%e‘t’& be algebraie over F, and p(z) its minimal poly-

Q»'n’\nmial, say of degree n. Then # is said to be of degree n

:t\lf‘m-'cr F. Let 61, %, -+, 6. be the roots of p(z), where

) 2

6. = 8. By Corollary 4.4 these n numbers are distinet.
We call them the conjugates of 8 over F.

_An example. Let F =~ E, By Eisenstein’s eriterion
z" ~ 2 is irreducible over R. Let 2"° denote the positive
root. Then

178 : 5
o I , 2‘“5‘4\?, 211".3{-92
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v its conjugates, where @ = ${(—~1 + ~/—3). For |
w0, « are the roots of £° — 1.

TuwoweMm 4.5, The lotality of numbers olgebraic over o
field F forms a field.

Let e and 8 = 0 be algebraic over F. We must show that,

f;‘fﬁ,a—ﬁ,aﬁ,g A
that ig, that thev satisfy polvnomials over F. Let i'(«?} and
#01 be the minimal polynomials over F fopd 2 and S
respeciively, Form  the polynomials  feds \Lnd halir)
descvibed in Corollary 3.12. They are polymbdiials over F
uri] are satisfied by « + 8 = o + ;91\\;&1d afl = af .
Fomoe the sum @ + 8 and the prodict’ad are algebruic.
Since —8 satisfies g(—2), —8 is algpbraic. Henee the sum
gt (—F) = — fBis algebuic, Einally, if m is the degree

iy, auhbrar org.i
a glx), then 1/3 uatlahes .Lf’%*(q 'Y')’ 1~,galuo braie. By

_ S : :
the result for a prodgct o 3 is also algebraic over F.

T.aler we sha g\he an alternative proof of this theorem
m.op@ndem ot ¥ metrie funetions.

Exten51dns of a field. Let £ be a ficld. Then any

He d A\,(}mtammg Fis called an exfension of F. Every

i \ﬁei' field, for example, 13 an extension of the field R
nF ational numbors.

e N TJ' # iz algebraic over F, then K = F(8) is defined to be

“the smallest field containing both 7 and 8. K is ealled a

semple algebraic exiension of F. Clearly K consists of all
fuctients —((-—))-, where f(x} and g{(z) arc any polynomials

over ' for which ¢{8) =¢ 0. In our next theorem we shall
show that every element of F(8) can be written more
simply a8 a polynomial in 6.

. &\
are themselves algebraic over Jo&

)¢

N\
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TnroREM 4.6, Every element « of I(8) can be awriden
uniguely in the form

@ = a0+ a4+ -+ @b = (8],
where the a; are tn I and n 1s the deqrrf of 8 ovor I

Suppose, as we may, that e = ﬁ where g{f} # 0, .-{[.';,1\'
"N

let p(z) be the minimal polynomial for & over I\ lﬁcn
plx) is irreducible and p(z) < g(x) (sinee oth(,r\\heg(&)

go p(x) and g{z) are relatively prime. By l\hbmem I.“’)..‘.%
there exist polynomials s(@) and £(z) such that' slx)play +
tixdglz) = 1. Let ¢ = 8. Sincoe 'p(ﬂ)x ~) W we {ind that

! -
-+ = (8, so that O
sy =1 O~

W dbra‘ﬂilfﬁré%; f’gﬁ@ t{6)
is a polynomial in 8. Forrs]"mplicity write & = h{f}.

Now h{z) = ¢@)p(®) + r(x), where r(z) = 0 or {he
degree of (2} is J€s§ than that of p(x). Since p(f) = 0 It
follows that .

\, a = hif) = »(f).
Hencesjs a polynomial in 6 of degree at most n — 1.

ir I}mam% only to show that r{x} is unique. Suppose
alsbthat « = (), where ri{v) is of degree at most n — 1.

.”\\;fh(,n r(8) — n(8) = 0 and 9 salisfies the polynomial
A\ r{z) — n(z). But § satisfies no polynomial of degree loss

" than n. Tt follows that m(x) and r{z) ave identical.

Tet ar, az, -, a, be numnbers aloecbraic over #. Tf
n > 1, the smallest field K = Fay, -+ -, @) containing ¥
and the a; is called a madiiple algebraie exlension of F.

TrarorEM 4.7. A multiple algebraic exlension of F i3 a
simple algebraie extension.
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Tao prove the theorem it is enough to prove that ¥{e, 3)
ig gimple when @ and 8 are algebraic over f'—that is,
that F{o, 8) = F{0) for some # algebraic over F. For if
K o= Floy, ar, o3 we can write it K = Flay, o) (o)
and apply the result twice; and similarly for K =

N

7N

Flen, ag, roy an). ¢\

Tebor, --, @3B, + , Bm be the conjugates over(F
of « and f3 respectively; we number them so that e 7 a
and gy = 3. 1f & £ 1 then 5, &= 3, since comucratgq wver F

ure distinet, Hencefor each ¢ and each fr =1 the\aquatmn
a; + 2Py = o + x5 ‘\\.;

s at most one solution for o in F7. Sinec*there are only a
finite number of such equations apdMience only a finite
number of sclufions z, we can chglséa number ¢ = 0in F
diflferent from all solut-ir)‘h?!‘.‘é-.dﬁl}‘@ﬂibf ary.org.in

o + cﬁ;?;.éé“a +¢f

fovall fand all & 52 1, Now let # = a -+ ¢3. We shall show

that F(8) = Fle8) wid this will prove the theorem.
Livst, every (‘J(‘ ent in F{# lics in Fle, @), for each

element in () etin, according to Lheorem 4.6, be written

\N¥
in the form ) y

6y + @‘4— RN
OV s ntaed ) o ale + @™

~\and the right hand mergber is certainly in Fla, 8).
We must show now that every element of Fla, 8) lies
in F{#). This will be achieved if we can prove that o and 3
are in F(6). For if they are, they arc of the form o = r(8),
B = 581, Every element of IM{e, 3) is then of the form

ula, 8) u(-r(_ﬁ_), s(6))
e, 8)  o{r(8), 5(8))




g
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which is cerlainly in F(#). It is cnough to show thal 312
F{g), for then & = & — ¢3 iz also. This we proveed o
do now.

Tet f{z) und ¢(x) be the minimal polynomials for o amt 3
respectively. Sinece f(8 — ¢8) = fla) = 0, the number 3
satisfics the equations g{x) = 0 and f(# — ex) = 0. :wﬂ\'
and f(# — ca) have only the root 3 in common. I’(.\Ollu.e
roots of glx) are By, -+, Bn and i f{# — 3. ’% (EIT
some 7 # 1 then 4 -~ ¢, would be one of the a'\ PO Py
to the choice of ¢, NS

Now gix) and f(8 — ca) are polynomul&. o owifh

eoeflicients wn F(8}, and they have e}\a\\‘ﬂv oe rool & in
common. Let h(r) be the minimal {391‘) nomml for 3 over
F(8). By Corollary 4.2, kiz) |g~(’c) ‘and Az ) | fl6 — oo
in F(#). h(z} cannot be of hagher than 1110 first, dogee,
for otherwidd" g‘ﬂ?fﬁ lf’(r@yg-lpcm would have more thn
one root in common. Hgne,e R{x) = yx + 8, where v and 3
are mn F{f). But h(ﬁ} ="0,80 8 = —8/v is in F(8), un
we are done. PAN
A an exam zQ, Suppow;, it is vequired fo write ht '3

2} sz a smspl extension R(4). The conjugates of \/ 3 are
'3, - \/_‘,1ndth0~sf*0f\/§ are v/ 2, vV 2w, 20" [nlhis
ease We\can choose ¢ to be 1, and § = /3 + /2. Then
R(VAN/2) = RV + V2).

Yo sha]l now give two proofs of the very important
»fgct that every element of a simple, and hence also of a

\ multmple algebraic exiension of F is algebraic over /.

Tor onc of the proofs we shall use the theory of svmmeiric
functions. For the other we shall use the following lemma
from elementary algebra; a proof can be found in Paragraph
27 of Thomas’ book listed in the bibliography. _

Taa 4.8, If n < m and if the ay; are in a field F, then
the system of og’uatwn‘s

Z(tl ;= 0, =12 .-, m,
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Firs oosolwlion for ay, -0, 2n T F, where not all the x;
e Zero. '

Tumorey 4.9, I 6 45 algebraic over F, g0 s every element
of F&),

First proof. Let « belong to F(8), where 8 is of degree
. over F. By Theorem 4.6 each of the powers of, ¢ =.Q\
0, 1, -+, n, of @ can be written \3\ <

fi=1 Ad

f = Z aa’jﬁ’j, ,~.'\ 3

&

N\

where 1he aq; arc in F. By the preceding lemma\’-e can find
in I a set of numbers d; ; not all zero, '«UC,Q\J‘IAD

Z a:d: = 0, = 0, 1’,;’;3\, n — 1,

for the number of * un1&“{1‘6%?‘5’["'@‘}'@}%"‘@,&‘8&%58-Hy one than
the tumber of equ&tionn T h(‘n,

NS

da —‘\‘Zd ZO‘;;
=

~ =il

¢(\J .
s\\ S S wd = 0,

L )
", j=it =0

o that o b’\éb‘{ie-\ the polynomial d,a” + dyg ™ ' - ey
over FlsG
\u\o‘ proof. By Theorem L0, o = »(f}). Let

.s,

\\“ fla) = ; (x — r(8),

,\\'here B, B, -+ - . 8, are the conjugutes of 4 over F. By
Theorem 3.11 the coefficients of flx) as u polynominl in ®
are in . Morcover f(a} = 0, so that the proof is complete.

It i now possible to give & new proof of Theorear 1.5
independent of the theory of symmetric functions - -as
promized carlier. We must show that @ = 8, « — 3,
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@ .
o, and 3 8 = 0, arc algebraic over ¥ when o and 3

are. Consider the field Fia, 8), which containz these
{four elements in particular. Tt is a simple algebraic ex-
tension, by Theorem 4.7, and every clemenl in it 78
algebraic over £, by Theorem 4.9. t:\”\'
'S\
3. Algebraic and transcendental numbers, A nmi'tl;ﬂ; 41
sald to he an algebraie number it it 1s 'Li'f(’llrmt. uver the
field B of rationals. According to Theorem, :L‘S?he totality
of numbers algebraic over B forms a field, IY is reasonable
to ask whether this field coincides »@th the feld of afl
complex numbers,—in other wordsl vhether all numbers
are algebralc numbers, We shall answer the question
in the negatlv 4B, ‘gllhlful uumhors which are not
algebraic; such num%m g :11:6 (,a%ﬁ o transcendentul.

LEmya 4,10, Let 8 b?’ % real algebraic nwmber of degree
n > 1 over K. 1"?3(31 Hhere is a positive number AL such that

g"\\ .
\\ o/ ‘ g E :‘) E
A g I{;ﬂ

P
Jor all at;(ma? numbers =, g > 0.
,{ ik

%Ot flxr) be the primitive polynomial of lowest degree
~w,t isfied by 8; it differs at most by s multiplicalive constant
“from the minimal polynomial for 8, and so is of degree 7.
Let M’ be themaximum of | /) | in the inferval 9 —1<
v % 4 4 1, and let M be the smaller of 1 and U’ Tor
this choice of M the desired inequality is valid. The
proof has two parts.
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Fisst, suppose that | 0= ‘ = 1. Then

|
!,9_ .’ > M >

;s|"-‘=(

q

for any rational infegers # and ¢ = 0, so we are done.

ils — I:" < 1, the proof is harder. By the law u{(\
the mean .

uai ~—j( )[u‘a 'P||f( ﬂﬂfﬁ\xﬁ

where: £ lios between 8 and p/g, and hen e\}h the interval
{f — 1,8 + 1). Moreover f(f) = 0, o\i'

&

! ()|< M le S "'”
f q 4(\7\«!\.-\.-' db“gullbgall "y.org.in
Now f{p) = 0; onhennsc:j{;a}) would not be irreducible

over A. Since f(z) hag dttegral coefficients and is of degree

e, ?TL \
M, '] (é) | = ﬁ;l\igcf m ig an integer, But m = 1, so that

."‘1” I;()| A

enee .07
o |
Q ‘:9_2%‘2_{121_

e

/.

E

Q B} the chotee of M.
TrazoreM 4.11. (Liourille). There exist iranscendenial
numbers,

. E - Z( 1)m2—ml

M=l
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and denote by
: PR
SJ.: = it = TM—;"Q

the sum of the first & terms of the series for £ Then

g P ~UHDE ol N\
i‘f“q—!z2 ST \
A P 4 ¢
. AN
< QTN gl gk .~':\\"“‘
& = . \J/

Suppose that £ is algebraic of degree n > I\os ar I7,

By the preceding inequalities \\,
rn}.g 7)53|< n—k .\\
j - P I v N\
& i g}_ | ) :3\\./
Let b — =. Them ,\\
W dbrqﬁ]ﬁb&jaryso _g%’.ﬁT
b “‘ \ ~ k i

From this we can (Jbﬁ{i?lﬁ ‘a contradietion. For, by the
preceding lemma, lhqt‘ exists & number 3 > 0 such that
~.\ .
M

x
w s

\\ —

/

Qk

- \/

50 ¢ | & "'\’;f' > M > 0foer all &, contrary to the limit

e
j\lst obtained., ihfn & cannot be algebraic of degree
;3 k 1,

t follows that £ is either a rational number—that is,
an algebraic number of de;br(’e 1—or iz transcendental.
We shall eliminate the first of these possibilities. Suppose
£ = %, where p and g are rational integers, ¢ > 0. Clioose

an odd k so that 2% > ¢. Then the number defined by

& =
1= -2 2 (DT = 2 3 (-t
m=L

#e=k+1
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it a positive rational inleger. Bui
vl _1_ q_
7 < 2T g SuEn = ZZA-_,;.-.: < 1,

1

by the choice of I, This contradiction leaves only the
aliernative that £ s transcendental, £\

The pumber & + & is also transcendental. Forif it were  , °
atgebraie and therefore the root of a polynomial with{\J)
real coefRicients, its complex-conjugate & — & would a]sg\
be 1 100, So the sum (¢ + #) + (£ — &) = 2¢ woulthbe
an algebraic number. This is impossible, since & ia’@ot an
alechraie number. “\ '

For 1he reader familiar with the notion of dergurilerahiﬁty
a simpler proof of Theorem 4.11 is a.\-';izilh\bhz. However,
it does not vield any explicit examples\of trunseendental
numbers. Briefly, it runs as follgde” The totahity of
polvnomials with ratidhal '%BE?H&EE%Y-i?.\.rgf?éhumera.hic )
Fuarh has a {initc number pii:’a‘(iots, so the totality of
algebraic numbers 15 denytperable. But the totality of
complex numbers 18 Ilt,m—dehl.lmemble, so that seme of
them must fail to be i:ml}gebmic.

Tl problem 0\‘%@‘5&1}9,‘ particular numbers for than-
ccendence is o véry difficult one. It was already known in
the last centdry that ¢ and = are transecndental (simple
proofs e.agr\be‘ found in Landau, Vorlesungen 1II; sce the
biblicgréinhy). But it ix only recently that such numbers as
»" afh2¥ have been shown o be transeendental. Thisisa
cofsequence of a far veaching theorem of Gelfond and

w\ﬁ};i'fn eider witdceh we state here without prool. An aceount of
Nt is given by Il Dille in the American Mathematical
Mouthly vol. 49(1942), pp. 654-661.
TrEoneM 1.12. Lot a and 8 be algebraic namhers different
Jrome © and 1. If the nwmber
_log &
7= E}ﬁ
is nol ralional, then it is also transcendental.
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We shall illustrate the theorem by proving from it that
2¥t g irangcendental, Suppose, on the confrary, that
o = 2¥% iz nlgebraic. Let 3 = 2. Since

log v —
— g = ,\/2

log 2

v 4
18 irvational, then n musit he transcendental. 1‘{‘\\\}
)
k3

obviously false, g0 that & cannot be algebraie.
T b P
A similar argument proves that ¢” is trangdaigental,
provided we first observe that e" ecan alsu{é} writfen
7% Let the reader complete the proof. \\\\,’\,

Y
Y
\S,
www.dbraulibraryﬂf’&in
1 \\‘
o N
N

<

®
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BASES

|. Bases and finite extensions. Let # be a number ficld
unel & on oxtension of it. A set of numbers @, «, -, @

7N
N

in & s said to be lnearly dependent (over 1) 11 1t 15 possilﬂe“:’\'

to [ind a set of numbers ¢y, &, -+, ¢ 0 ¥, not all ZeTON

such that N

oy R oo o T G = 0. '\'\,"

«oNGYY .

Otherwise the numhers ap, o, -+ -, w, 418 c;tll\(g}l'f-zra-ﬁari.y

indenendent. A\

t of numbers 8y, B, -+, 8. in l';{\’@:k‘a:.‘lid to form a
basis® for K over F it for cach elemeniyhin K there exists a
uniue set. of numbers dywas dbraulibianyBegeh that

B = diph + dBo i A
Obscrve that the 3; are lineasl§® independent, for otherwige
0 has « representation A
0= '1.3({‘#7’ e £ -+ e,
where not all the¥ are zero, and also the representation
2N )
D03+ 0B+ - + 058,
. £ \ "" . .
('Ulli,t'al‘j}-'..r\(?fthe requirement of uniquenesy.
Lu Mﬁ{v.ﬁ.l. If K has o basis of s clements over F, then any
nunhers an K, 1 > s, are lincarly dependent over F.
g . .
L8t B, , -+, Be be u basis for K and let e, -, @ be !
N/ . S C s e L .

“Witubers in K. By the definition of & basi we can fimul
4 . .
mimbers a;; in F such that

oy = E i 37, 1= 1: reey b

i~

* This is alsa called o fundamented sysiem inthe older literature.
17

\.

N\
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Since { > s we can invoke Lemma 4.8 to conclude thur 1here
exist humbers e in F, not all zero, such that

Za,-;c; = {3 I IR X

QS
It follows that .‘\:\"
§ 1 4 {'\”\
. -4
Derar = 2. & 03, P ¥
i=1 =L j=1 AN
& 3 {'“
‘\
= o’j, E i £ }}\"
) imil \
'\\.,

500 1hLit the oy are lincarly d(‘p@ll(].(,ll\\

AN

lulzom M22 U, e, - ‘, ! maa‘ oINS IR P T
hoth buses it fd bc}' %ﬂfhl Fhenored

Hs # fweecan auppoa&g’:> 8. By the preceding leimsa
ithe «; must be lirlefuﬁ-"‘dependent. This is impis=ilsle,
sinee they form a bd\l‘-

We have s,hov{i\that i A bas a basis over &, overy
hasis has the Bq\me pumber n-of elements, n ix ealled the
degree of K{ower F, and K is called a finite cxicnsivn of
degrec m.mm F.Wewnriten = (K/F).

> Ml
I,'i-xiﬂ-[.-k 3.3. If K 45 a finile extension of degree s wivr P
ther any w E°'-rmarly tndependent elements in K form ¢ hasie.
’\ Tet By -+ Babeabusisfor K over F, and It ey, - s
O e he a set Of n lincarly independent elements of K. We
) wish 1o show that cvery element « can be vepresenloed
in'the form

e = thoy 4+ daas 4+ - - o, .

That sueh a representation = unique follows diveceily from
the linear independence of the e, .
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Sinse the 8 form a basis we can write

3
thzauﬁs =1 g
=1
i
@ = 2, 8.
I+ Lemnma 4.8 we can find ¢« , not all zevo, i F¥ such that ()’
) N7
« \/
Z 0 = 0, s=1-- "”:U{'
N =10 '..)\\ b 2
Then (&

et 4 1o A tao A o ez 00O

QY

1 n w P .' .

\ Q!
- . . - P "4
Now e 7 0, since otherwise een + & >+ e, = 0 and,
ot secount of the linear” AL O ¥ 8, all the
L

»

¢ wauld be zero. Ilence N
CL PR g Cr
e ———QLR—OQ"“ — — ¥
0 ) C

fx vequired, Q\Q d

THEOREM B—L?} o, c- e, ap t& o basts Jor K over Fand
PR

P \,/: »
£ . .
(N |‘31 = E Ay Qi g = ]-: 2: e Ty
N\ im1

N/
zf‘?'r.m:g'\& wijare in Iy then Bu, -+ Bu s also ¢ bases if and
psGp3f the determinont i @y ! 35 not zero.

Q‘:)Tirst suppose | 6:; | # 0. By the preceding resulis it is
enough to show that the [, are linearly independent.

n
Suppose > ¢;8; = 0, where the ¢; are in . Then
i=1

I L3 3 T
0= Z Cji z gy == Z e Z £yl
n =

=1 i=1 =1
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Since the o, are lincarly independent
ki
Z g = 0, P= 1, - 0
=

The determinant g ! £ 0, so that all the ¢ must vanish.

Conversely, suppose gy = 0. Then the « equations

immediately preceding are known to have a anlnhcm m‘r}}
the ¢; 1n #, and not all zero. Retracing our steps, \\‘“ Wind

n £ s
2.8 =0, (O
= A\N
so that the 3; arc not lincarly independedy
\\,

2. Properties of finite extensmna\\t T We Propose 10

show that finite extensions and fﬂmp’k, algebraic extensinng
of u feld ‘t{l‘C“tH@‘SﬁthTlﬁmﬁQT & dn”

Levys 5.5, If K s & ﬁ‘?% te cxtenston of Fothen ooy
element o of K 1s a?gebra:?m‘m I,

Tet n = {(K/F), @\' Lemma 5.1 the n —+ 1 numboss
Laa, --,a" m'e\nmrl\' tlependent, so thatiey ,e0, - -+
¢, not all zero %\\\s in ¥ such that

.~..~'Cn Fae+ -0+ ca” =0
A\
It folhﬁ\\*e'rhdt e sutisfies a polynomial over F
HEOHE\I 5.0. An extension K of F s fintic if ond only
?}\\E s a stmple algebraic extonsion.

% First suppose that K is a finite extension of ') and let

"‘\‘,/

\ )

@, *+, ap be abasis. Then K = Flay, -, &) By the
preceding lemmau cach a; is algebraic over F. It follows
from Theorem 4.7 that K is a simple algebraic extension
of F.

suppose econversely that & = F(8), where 6 is of dvg,lee
# over F. By Theorem 4.6 the numbers 1, 8 g

T

N
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forma n basiz for K over F. This compleies the proof.
Note that (K/F) is the same as the degree of # over F,

TieorsM 5.7. If K is finile over F, and E over K, then E
{g finite oper K. Moreover

(E/FYy = (BE/K) (K/F). A .
¢\

Lot o, -, e e a bagis for K over F,and 8y, -+, o7\ I
for 7o aver K. It is easily verified that the mn produgts”
ad; are linenrly independent. We shall show t-hat-:th%.y
form 4 basis for E over F, A

17 & is any number in E it can be written o :.ZE‘;J vildi,
where the y; are n K, for the 8 form a ba: ig of F over K.
Similzriv each 4, can be writien > oI by where the aq;

ave in i, for the o; are a basis of B\ever F. Then

N

I = www.dhb ‘ﬁull’ﬁral'y_m‘g_in
o = Z 8 Z &gy ?::E 3 dij o @i
1e=1 i=1 X

Wi=1 1
as tequired, The formula™given in the theorem follows
immediately. &\
We can now prové the following refinement of Lemmu
el \
[ W

CoROLLARYIDE. Jf K is of degree n over F, then any

NS/ . - s
element o 0{ X s algebraic over I, of degree drviding .
¢
Tet Bt/ (). Then

O n = &/ = (K/E)E/E).

:ij;éﬁce (B/I) divides n. But, by the remark at the end
Jof the proof of Theorem 5.6, the degree of E over F js the
same as the degree of a over F.

TrroneM 5.9, 1] @ salisfies the equation
—1
o™ + g’ A b =0

where the o are alyebraic over F, then o is olgebradc over F.
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Tt B = Floy , ++ -, aey). Thiz can be wrilten as u simple
algebraic extension of F. By Theorem 5.6, F i n tinite
extension of F. Moreover Ela) is a finife extension of £
and henee, by Theorem 3.7, a finite extension of 7. Then o
Ties in & finite extensgion of F. By the preceding coroliary d
is algebraic over F. O\

In much of what follows in this book the field /7 Y} be
tuken to be the field & of rational numboers. ..-.\;1~.i‘gf'rff-i.:mic:
number field is any finde (hence simple),~c‘;‘.1?h>:ra.::~'-f'cm, af
R. The totality of algebraic numbers, wghle it forms a
field (Theorem 4.5}, does not form andalgbhraic myber
field. For suppose this ficld ere p#\\dvrrm(‘ noover J.
The presence in it of an element of\dtigl ce greater Hun »
would contradict Corollary 5.8 But it is casy Lo produce
an alg elmﬂhﬁahmbﬁa&yia;%eﬁl o+ 1. The polynomial
™ — 2 is irreducible m.c.t T2, by Fisenstein's criterion,
s0 27 i of degree " + P,

3. Conjugates gm}l discriminants. The reader is veminded
that the (,on,]ﬁ\gs.‘rv over F of a number o algebraie vver F
are the rogty of the minimal polynomial of « over £
We hnd, Wruseful vo define a new concept of conjugacy,
and t:\dbeuss iLs relation to the old.

LYK = F(8) he a finite extension of degree » over I,
@h\d suppose o to be a number i K. By Corollury 3.8

' Withe degree m of @ over F divides n. Aceording to Theoren

4.6 @ can be writien uniquely in the form
Ti—l X
o = Z e 0 = r@).
=

Tet &, -+, 8, he the conjugaies of 8 over ¥, Then ihe
numbers

o = r(&')r

h

.’-n,
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are called the congugates of « for F(6). S0 « has n con-
jugates in the new sense, but = in the old, where m | x.

It Is easily verified that the conjugates of af and o + 3
for I'(6} ave respectively a8y, « -+ a,fu,and e + 51, - ,
a, + 5. -

The relation between the old and the new conjugates . |
is settled by our next theorem, K\

THEOREM 5.10. (i) The LOﬁjltgafes of a for F(6) are, ﬁvp
conjugales over F each repeated n/m times. (i) a, Banm F
if and only if all conjugates for F(8) are the &qm»e (ii1)
Fla) = F(8) if and only of oll its conjugatedJar F(8) are
tlistinet,

Az we showed in the second proof ()Kﬂimrem 4.9, the
polynomial

s"

flx) iﬁﬁH.ﬂblﬁﬂlﬁEﬁ;@l}y,org,jn
RPN

is & polynomial over a.nd}f(;ai) = (. (f(z} i3 called the
field polyromial for o). Lei'pia) be the minimal polynomial
for w over 7', By C cuol(lhf 4.2, gz} | fz), so we ean write

) = o)),
wheve glz) andPh(x) are relatively prime. We prove that
Aley = 1. Not@that i h{x) is a constant at all it must be 1,
since g( 9y q&mt f(z) are monie,

If h{wNinot a constant it has one of the #(4,) as a root.
T ht‘ll’&(}'l i)} vanishes when @ equals one of the ;. Let
p[%s.h{\ the minimal polynomial for #, and hence for ¢,
l‘hen pla) | (). It {ollows that A(r(2)) vanishes for
oall the #;, in particalar for 8, So A(F(8)) = hla) =
This 1% impossible by Corollary 4.3, since g{a) = (0 a.nd
g{xl, Bz are relatively prime,

Hence flz) = [y(u)])’. Since m iz the degree of a over
F,s = n/m, the field polynomial is a power of the minimal
polynomial. This proves {i).
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As for (i), if o is in ¥ then g(z} = v — a, m = 1,
= n/m = n,and f(z) = (x — @), s0 all the (,Olljun'tf(‘\
are the same. Conversely, if all the conjugates are the same
f@) = (x —a), 508 =n,m =1, and s in F.
Finally, we prove (iil). Note that O

(FE? )) (?E? ) ‘ (i—(ﬁ) | \\\

s0 F'(8) = Fio) if and only il m = =, 8 = 1. In, t‘iffﬁ‘t nse
f(z) = g{x) and all the conjugates are dlbtantx On the
other hand, if the conjugates are distinct § )1, m o=,
and the result follows. The theorem is preved.

Now suppose K = F(8) 1z of dorer'?} av er F, and let
@i, --- , @, be a basis. Denote by oq } 1, «~+, r, the

con]ugates oo ﬁyrghhjjpﬁga%qr&%wmnam of theseten, -+,

o, 1s defined by

X

"‘

S g
A[(I] r .,"ﬁ"] |a§t !: 1

where | )’ | is the determnmut

# A1) 1 1
«i\\%&' at” Y
,".’u: [n) {m} (R3]
¥/ t : »
P\
N\
’\.,i Ll
W\ ;'3;, = Z Cyn 05 = 1: AP ¥

) is another bdbls, then ey ! # 0, by Theorem 5.1. By the
/  multiplication of determm'.mth woe arrive at the importunt
formula

(5'1) '&{Bl y T }ﬁn] = | Ok =i2 1’310&1 s T, C!ﬁl.

By Tl*;eorein 4.6 a particular basis for J{(8) is 1, 6, o,
0 I we use the faet that (0 ) " (the 5-ih conjugate
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of 671 is the same as {§Y" (the i-th power of 8”7} we find
that

Digy = all, 8, -, 8" Y

: 1 H(U 9([)\2 . 9(1]' n—1 : y
R o N 3
| [u) = | N
. O 1Y R £ N <O\
1 4 (t‘? } (g*""y :“\:\\ /
atd this Vundermonde determinant is known to l'Lavg.th“é
vatue® L)
e . . .- ‘&
(5.2) Doy = TI (67 = 67 .oy

Tgi<ign
N
D0 # O since the conjugates of 8 fou F\{B) are necessarily
distinet, Since H(8) is symmetric in thev#™ it i¢ an element
of ¥, Tt is obv 1011:;1\' p@%ﬁmébﬁmﬂmﬁth{y o dme real. In
Blitakea = 07 = 1, -.,J %2. Then

—\[.81‘ :ﬁyI— |CJT»| D(o}
s an element of F. \\,c\haw proved

Tneorem 5.11.5F4e d%rmmman{ of any Lasis for F(#)
wsin F and 28 negeg zevo. 7T F, § and the conjugates of 6 are all
veal then thexd@grominant of any basis is positive.

The\byclotomic field. We shall now discuss a special
kindzon fleld which is of great importance, Thig will serve
#e ‘{m Hhistration of the theory which preegdes, and will

“Eo be uscful in owr later work.

N/ 14t p be an odd prime, By Theorem 3.9 the eyclotomic
polynomial 277" 4+ & < -+ 4+ | i3 irreducible over &,
Henec any voot ¢ gencrates a field (0 of degrec p — 1
over B, Rie) is called a eyclotomic field,

* Uspensky, Theory of Igualions, p. 214
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—1
P75 are all the roots

If ¢ is any voot then ¢, &, --+, €
beeause
(i) nonc of the ¢ is 1, for otherwize [ would satisiy a

polynomial @ — 1 of degree lower than p — 13

(i1} they are all diffcrent, for the same reason; and O
(i) they all satisfy @ — 1 = 0, smco (g“r ~—~\.
"y — 1 = 0. Thissct of roots ¢, -+, ¢ Fare ¢ qllori, L{xe

pmmme p* roots of upity. Sinee they lie on a (,udt “of
unit radiug and none of them is £1, they are all Jma,,ih“. Y.
rlh(* conjugates of ¢ for R(s} arc then simply \{»g I
¢" . Henee we can write §' = Vw thﬂl Use 1111.3
mimmfitum to compute D{{). )

1%v l"hemem 48 withn = p — l\n{\basis for R{{) i
Lt o, " LBy (52 A/

wwMP}‘aglibrar@Ior,g‘:jr{{:" - g'j)g‘
us;‘{f's‘.’ﬁw" )
Another hagis is ¢, {7, - ;‘,5 for this set of numbers is

linearly independent ov er R. The relation between the
two hases Is given by

£ 0+
A =0+04¢
:"\,/‘ e
QU =00

¢
N Sk Sl il
«slg\the determinané ¢, | has the square [. Henee, by
,\"\ 15.1) and (5.2),

N6 Do =l e = T @ -

1=ieysp-i

Tmxores 5.12. If ¢ is a primitive p™ rool of unity, p an
odid prime, then

D) = (— DTV
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nee f, , ¢ are all the primitive roots we have
@ —

.._11 = :111‘3—1 __E_ - —|— 1 = 1=I (;'I,' _ ;ll)-

])Jﬂﬂlenhaic ihe ughi and Jeft-hand members, and Iet /\
= {7 Since ¢ = 1, we find that Ao
O

P pl ; PAN
(5.5) ~E =0T~ O
1’_#‘?‘ '05“‘ >
. T
By 54) witha =0andz = 1 1'espectn-'(\1£¥\rt follows
thar \\ J

=1

I = -*2» ot
=1 .(u:’\

and O
T W, dbr‘guhbn ary.org.in

[1 (1 .sg")

i=1

(54)

z,o

In the hu&i\.pmdu(,t 1 < 7 {for half the factors and j < ¢
for thesother hull. There are (p — 1) {p — 2) factors in
all. \Ré)ce the last product is

N LN | (IR vt

,“w 1€icim p—)

Q “Put p is odd, so
(_1)@—1){;;—2};’2 - (__1)(:-‘!—1J1’2_

If we combine these facts with the formula (5.3), the
theorem follows,
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ALGEBRAIC INTHGERS AND INTEGRAL BASES

1. Algebraic integers. Let R(6) be an algebraic numher
field. What shall we mean by an infeger in this field? W 1rh\
the example of the (Gaussian integers as the “infeged 25"
in (5} before us, the following conditions seem lf‘d“,{‘uf‘*l}?lf‘
to demand of cur definition:

{3) if a and 5 are integers in R(#), 80 ure a 487 \ =5, e,

(i) if e i3 an integer m R() and is Q" ratis il
pumber, then it is a rational integer; /0w

{iii) il @ is an integer so are tts m?}mgatc ;e which
of the two senses “conjugate’ Is ©) e taken iz clearty 2
matter of inflifferdbkebidreary orgin’

It turns oat that the Eullo«\mg definition meets all the
requiremenis: an algebrale numhei 8 an afgebraic iateger
if its mninimal po]vmm;aﬂ haz only rational integers as
coctiiclents. Sinec ammuml polynomial is monic a nust
galisly an equah&ﬁ\

jJ x) = ’ﬂ'—‘j‘ " 1+ ™ TR + o =0,

where b€ w7 are rational inlegers. [t follows that the
Iujlllre&m\nt (iil) is automatically fulfilled. To see thii
(U.).ﬁ\\*ﬁibo tulfilied is simple, for if « satisfies plz) wml 18
rfgfional, then its degree over K is [, so % = 1, and so 13

osmmimal polynomial is simply 2 4+ a0 = 0.

3
\ 3

"Fo prove that (i) holds is somewhat move complicated.

Lumma 6.1, If o satisties any monie polynontal f(z} wifk
rational inlegral coefficients then « 15 an algebraic tnfeger.

Lei p(x) be the minimal polynomial for a over f.
i_[t s menic, We shall prove thai all its eoeflicients are
mtegers. 1L will follow that « is an algebraic iniegoer.

53
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By Corollary 4.2. fz) = plxg(z), where ¢z} i a
polynomial over E. The proof of Theorem 3.7 shows that

far = cp*(e)g™(z), where pla) = cp*(z), and p*(x)

and ¢*(2) are primitive. Since f(z) is monic it is primitive,

and ¢» = 1. p*(z) and ¢*(x) have integral coefficients, and

nust therefore be monie, for their product flz) is monic.a
But p(z) is also monic. Henee ¢, = 1, and plz) = ) Q)~
haz integral coeflicients. \/

Tasonaym 6.2, If E(8) is an afg(’b.r(uc number flﬁ’a' then
the integers #n 2t have the properties (1), (i1), ,(JQ)\ specified
abore,

Properties (i1} and (i} have alrendy becn \'erlﬁed only
(1) remains. et oy, - @ 1B, - - L‘?Q)e the conjugates
over A of the algebraic int;egom a“:—— e and 5 = 5
respectively. i

The eclementary vm\g:e\t‘; %bruul&}?tlu%g TS
are rational integers sincepaXuept for sign, t-hey are Lhe
ceofficients of the minimal polynomial for the algebraic
integer 8. It follows frem the second parl of Theorem 3.10
thut any symmetr a,c.p}lynmmal B, -, Be with rational
whiegral wefﬁczerﬁ@w a rational inleger.

Now let f{z] e the minimal polynomial for the integer o;
and deﬂnc»}" '

& W) = 11 fle — 85,
P 11

A
Th¥s i3 2 polynomial in . Since f(z) has integral coeflicients,

“\ﬂ’l(‘ coeflicients of h(x) are symmetrie polynomials in the 3;

with rational integral coefficients, By the italicized reroark
above, R(z) has rationsl integers for coctficients. Hince

Flx} Is monie, s0 s h(z). Finally

e 4+ 8) = hlen 4 B1)
= flay + 3 aonm+&—s)_n

j=i

N\
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since f(o) = 0. S0 by Lemma 6.1 « + 8 is an algebraie
integer. It belongs to R(#), since o and B do. The proofs
for @ — 3, a8 are similar, and will be omitted (ef. the frst
proof of Theorem 4.5}

Note incidentally that this proof shows that « + 3,

o — B, of are algebraic integers when e and 3 are, cven it
we do not suppose that ¢ and 8 lie in the given fiekd # (87

Now define a ring to be a set ol numbers which cont ml\a
a -+ 8, a0 — B3, «f when it containg & and 8. Then \\:p ’1‘&1\9

CoroLLary £.3. The tolality of algebraic m!qux@\hmm ¢t
ring. Se does the totolity of algebrate inlegens potlaiied

any algebraic number field. N\
Turorew 6.4, 7f o satisfies an eguati«&z “
('\C) J’ww‘b '&hﬁhhbfg}y’m gj}\:. e =0
where the v are algebraic mtc mrs then a 1s an algebroic
inleger, R \\,

Tt 75" denote the c.gn‘jugatcs of v; aver 7. Form the
produet QO

hle) = M(e" @™ + 2™ 4 e
over all theseg CQnJu ales, By the now familiar argrment
on sy mmeu\;,,mnctmns the coefficients of i(z) are in .
But they\fm’e also algebraic 1T1TPQ;€1\ since they consist of
sumg ©f Products of the vi”. By property (1) they are
m{t@n 5 inlegers. Bince f(z) | A{a), hla) = 0. Finally
ﬁ ("5) is monic, so Lomma 6.1 can be invoked to complete
Ahe proof,

We conclude this section with a simple but very useful
property of integers.

TrrorREM 6.5. If 0 28 an olgebradic number, there is @
rational integer r such thal »8 is an algebraic ?Zflic_.q@?'.

f watizfics an cquation

L —1
O T Gama” T+ e gy = 0,
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where the @, are raticnal integers. Then a.4 sulisfiog
"4z F et

-1
+ ana'n—‘{:l?‘ : + -+ (1: ty = 0.

- S
This makes it an algebraic integer. (\)

An elegant lresiment of these elementary pr*;pemc«;n of

algebraic integers without the use of symmetric fum:tluns.

will be found i the two books of Landan h;ted in the
hibliography. \

N
. The mtegers in a quadratic ﬁe’fd. A guadratie field
ib a {;eld of degree 2 over the m‘t snals. Such o field is
necessarily of the form £(g), wher 1:. A, loot of a guadratic
po[vnomml rreduetble over the umonala (ﬁ\ eorem 5.5
We ean ¢ -;umc #to be an alg{,bmw integer; let 1 salisfy the
equamon ¥ + 2ar -1—JJ 0, where ¢ and b are ralional
numbers. -Then ¢ a —a % /! — b. Remove from
a® — b all squ ht tors, so that @@ — # = &0, where
D hag no fae l&)&ro higher than the first power. Clearly
R(6) = R(aB). In summary, overy quadratic field is of
the form{ R\(\/-_) where D is a rational integer free of
80 .1Tf3¢“1,{ tors.
3 Fheorem 4.6 the numbers 1, /D form a basis [or
th(‘ tield R (/D) 0 that every number inil can be writien
I+ m \/i)

, where I, m, n are rational integers.

By cancelling, 1f neecsgary, we can assume that 7, » and »
are relatively prime, and that » i8 positive. We shall make
this assumption,

How docs one identify the algebraie integers among the
elementa of. h’t'\/_\ ? The answer depends on the nature

of the integer D. —— L m V Zis un integer only if it patislies a

N\
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quadratic Z 4+ bz + ¢ = 0, where b and ¢ are rational
integers, 80 We may write

6.1) (I+m \/D‘)z + bnll + m D) + e’ =0

N
Then A
(6.2) P miD -+ bnl 4 cn® =0 {,’\f\\")
and A
m(2l + by = 0. PN 3
~\
If m = 0 then Z—_l_%\/—_ is an integer if and only if n,;
we assume then that m 3 (. In this eé}é = b, 30
that equation (6.2} becomes 2\

\ 3}
AN

W, d%naullbr EI" j_o;g;n:t 0.

Let (4, n) = d. Then &’ Lva Since D is squarc-free,
dim’. But I, m and n hy_ aw«umptmn ghare no factor ex-
cept 1. IHence d = 1pand 1 and n are relatively prime.
But tn = —2I, 50 thaN | &. Consequently n = Lor 2,

Ta = 1 th‘é& Tm‘/__

is neeessarily an nteger.

"This follow\s Mrom the equatlon (6.1). The possibility

n o= 2. I‘TLu&t be scrutinized more closely. The numher
—\Z + ??;\ 1—) satisties the quadratic equation
\\ ot 9y
A\ 2 L b= mih
¥ =+ — = .

a __ m_Q i a

Consequently it 1s an integer if and only if
rational inleger, that is
P=w'D .

Since (, ) = (1, 2) = 1, I must be odd, say I = 2t + 1.
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Then ¥ = 4¢ + 44 4- 1, and the requirement becormes
(6.5} 1= w'D (4).

Now [} is congruent to 1, 2, or 3 modulo 4, sinee D i3
square {ree. We consider each of these three pO{-\SIbIlItI(‘S ~
separately, 1f D == 1 {4), then (6.3) reduces to 1 = m'(4).
This helds if » is odd, but not if m 1s even. Ience 1f.\ \

D=1 (&) all numbers of the form E j_—-T—H' 3/—_ and‘m
hoik odd, ave integers, If 2 = 2 (4), then D ig et cn Y50
{6.3) cannot hold for any choice of m. Finallyy 1£)9 = 3(4)
the equation {6.3) becomes 1 = 3 m *(4). Tf mNY even this
is impogsible; if m = 2s + 11 odd (6.3) sduces to the
eontradiction 1 = 3(4). Consequently’st”’ = 2 yields no
integers unless D = 1{1). We have #stablished

TrEOREM 6.6. Every gumuﬁdﬁéﬁhwﬁf@ccfbg%ﬁ (D),
where D 4¢ a square-free mi‘wnal integer. The algebraic
integers consist of these cfassr’\o

1. all numbers of the frn I+ m /D, wherel and m are
refional tniegers, amjﬁ“\

2.4 D = 1(4) \Q’wﬁ not otherwise, all numbers of the form
I iy 32 N I ?f,hwp { and m are odd.

= N \
2

3. &@éfal bases, Let K = R(8) be an algebraic number
htﬂél b degree n, By virtue of Theorem 6.5 we may assume
Ktt)'b(‘ an integer and ghall do so. By Theorem 4.6 every

Nelement of K can be written uniguely in the form
Za=u @ " where the «; are in R,

A sef of integers ey, + -+, «, ¢ called an éntegral basts
of K if every integer « in K can be written unicuely
in the form

o= ey + -0+ b,
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where the b; are rational integers. We shall show thatf an
integral basis is necessarily a basis.

Let 8 be an element of K. By Theorem 6.5 r8 is an
integer for a suitable choice of the rational integer .

Consequently we ean write N\
3 = by + -0 A burs <N
N\
) I [ « \/
g = = ! + - 4+ D . AN
T !

If remains only to show that the o, ave llnearl}u\\dep{ mdent
over Fi. Buppose

Clal—ll— et +csasz’0\"

where the ¢; are rational num )mc-“’By multiplying tie

equation by the §1e.ﬂest commern” denominator we find a
reldt-l(}n WWW’ rau J. rary. mg'ln

iy + "3 + da, = 0,

where the d; ure 1at'0ﬁal integers, By the definiiion of an
integral basis thedi re all zero, Consequently the ¢; are all
zero, and the a\x s linesrly independent,

Liywa @ 7) Ao integral basis is a basis.
It follgs immediately that s = n, that iz, that the
num;bej of elements in an integral ba51s equals the degree

ot 'Q\Q‘T eld.

AN \ LD““A 6.8. If a1, ++ -, @ is any basis of K consisiing
&\ 4 only of integers, then Alay, -+, .l s @ rotionol integer.

/ The conjugates of the «; are algebraic integers, Con-
sequently

A= Ao, ey a] = | e
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is an algebraie inleger, By Theorem 5.11 with F = R, Als
also & rarional number, So it is a rational integer,

Tuvonear 6.9, Every afgebrede number field hos af least
one iredegrol basie.

Lev K = BRI be an algebrale number feld, where ¢ is A
assumed i be ntegral. Consider all bases for A whose( \
clements ave algebraie integers; 1, 8, -, #° ts, z‘m/
exataple®, Since, by Lemma 6.8, th(, (ll‘\(’llﬂuﬂ&ﬂt (}f emh
such basis 1s o rational integer, there i3 one basm,@g, e,
@y, for which | Alwy, »-, )| is a muniddiet 4. By
Theorem 3,11 ¢ is not zero. \

We shall prove that w, -, w. I8 aﬁbﬁl’reglal hasis.
Far suppose it were not. mm it iy m,\mv case g basis,
there 12 an integer w, sueh that
www db%guhbl ary.org.in

N\

\.

= (uwl
where the o; are rational numbms but not all integers. We
may suppose that o is neg mtecﬂ al, Write it asa = a 4 7,
where o 1# a rational m{\gm and 0 < ¢ < 1. Define

*
W = ow o (J'.Oul %i\(’th — O‘)‘C\JL + Q'(AJQ H s + Anldn 4
Wy = g, , =2 - 0

\ ./
The detcrminant
INE

S0 010
AN :
~O Y T 1
p N - - * & . Lo . m
718 nob zero, By Theorem .4 @y , -+ -, we 18 2 hA8I; MOTEOVE!
1t consists entirely of integers. Also
% * 2
A[w? y T wn} =r A{WI T s wﬂj)
PAlel s wi] ] < AL, e, ]
*Wo bave not proved that 1, 8 -+, 70 is an infegral busis.

That it need not be will hecome apparent laler in the ehapler.
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contrary to the choice of the last expression as 4 Mminimurm.
For ressons which are now clear an integral basis i alzo
called a minimal basis.

TurorEM 6.10. Al infegral bases for a field K = E()
have the same discriminant.

Let ca, -+, an B, -+ PBa be two inlegral bascs. Thcn \

|
N\

o; = Z:1 ¢ 8:, q = l,, o,
where the ¢;; are rational integerz, But \ ~\ "
(8.4)  Alay, -+, a = e ABL, N .SnJ;
and | ¢;; | is a rational integer not z(n{’,;s ) that
AlBy, o Bul [ AN, el
By reversiliy’ f’ﬁgti T{‘él Yafﬁe"a&?ﬂhd B; we find that

S SPREREY IA&, ey Bal
But the dlscrlmmantq Wre rational integers, so that
Aoy, o+, aa] = £4]81, -+, Bul. By (6.4) the plus sign
must prevail, a (K‘thé proof is complete,

The discrim%ant d common to all integral bases i3
called the diseriminant of the field K. Clearly d # 0.
Since d @Y rational integer, |d > 1. Later it will be
showt\thﬂt itK # R, then 'd| > L

\.,

\\ Examples of integral bases. We begin by obtaining
~mte,q,1 al bases for the quadratic fiekls Ht'\/’D‘l ‘dizeussed
”in §2.

First, if D £ 104} then every integer iz of the form
I + m /D (Theorem 6.6). Consequently an integral
basiz is 1, 4/D. Note that in this case the dizeriminant
of the feld is

1 DY

= |

i | = 413,
1 =D

N\
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Next SUppose that 3 = 1 (4}, BEvery integer is of the
ﬂ—l— i ’\, f)

form * -where L and m are both even or both odd.
. 1 . .
In particular -—I‘Z—V—D ig un integer. Tt follows that every
integer cun he written in the form A
J— ' \ P
E (1 + \/D) _ A\
a4+ bl —- ) O
2 AN
QS )

where g mfl b are rational integers. An mtegral,\%{asm i

+\/ A\S)

therefore 1, ——— =", Moreover
AY;
PR .
! , L :i—?\/f)' L&
4 = I i:\'ww ﬁ{ll"bl af')y org.in
S o
. : \2 ’
Turores G611, An mr@graﬂiaﬂ‘zs for R(\/D)is 1, v/D
D £ 14) and 1, L +;/D = 1 (4). In the former

case fd = 4 D) in i}h\miwr d = D.

A more (’omphéated problem is the derivation of an
integral basihfor the eyelotomic field R(p), where { is a
primitive ; J.&\loot of unity. Yt was shown in §4 of Chapter
¥ thar\j\h} set 1, ¢, -, ¢ is a basis for R(f). We shall
Row ﬁil}ﬁ\\ that it is in fact an infegral basis.

menn G2, Ifn = 1 — ¢, then 1, 2, ++- :)\3”'*2 is an
\\;qu;ai’ brsis for R(¢).

Let wy, -0 @,y be some integral basis for R}
Then
. Fiaag) . .
(65) R; :Z C.l'jwrl} -? 20’..‘,;{}*2’
i=1

where each ¢:; 1 n rational integer. By (5.1)
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(6.8) A[LA - N = e P AL, o, wpal

Now
(6.7) N=1-24¢ A
M=1—8r 437 - ¢ \:\
= 3 : ¢ ‘ O
and also ¢ »
. \ ”> &
§ =1— *NX
3 o \\\\"
O=1—=2xn+ ) \\\,
C =1 =3+ ?\Ai}%"hs
g0 that www.dbraulibr.ary,or’g\}f}}“} '
SN -
AN - N =8 P AlL ¢
RN
and -

A{]'a £y “%‘?R_] - la‘U |2 AIIJ A‘1 oty ;\P—E]’

where the g, ﬁ,a;e&\simply the binomial cocfficienis appearing
in (6.7). Hm}eé e[ =1, and so by (6.6)

> ¢
t’g;{f’ &y i'jl .“] = i |z A[‘-‘-‘I LI “"p—l}'

S}th& cii | and Aley, --- » @y are rational integers, it
Jollows [rom Theorem 512 that |e; = =237 for some
{Q\u’ﬁtegm‘ J =0
Q * If we solve the system {6.5) for the «; it turns out that
they can be expressed in the form

S e SRR Sl S
ST e ,

where the a; are ralional integers, Since wp, *e o, wpoy 1S
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an integral busis, it follows that every integer in R(7)
can he expressed in this form.

IE 1, A, -, A% Is not an integral basis there must
therefore be an integer in B(¢) of the form

a4+ mr+ - o\
p ’\\
where p does nol divide e + ad + -+ + GF_J\ \Let

o be the @; with least subseript such that pta,. Ti}en

- "\\
A A o e AT 2: ‘&

14 x-’\\;
iz an algebrade integer, where m < p’,-)'\‘}
Az we showed in §4 of Chapter VN v
p=(— £ (}vw\\r(‘dp@u Eniar_y o,l'-ng

1—5){1«-—& e (1 —

nol m—l,u
=" T R,

AN

whove v and « aw\\*gobla.ic integers. Henee

—2
R G A g N
A\ \) >\m,+l

moi

i au iil&i&bram integer. A cancels into all 1erms but
the \1:"-10 we can remove them to conclude that g/ A is
an, a}»ebx aic inleger. We write @. = ¢ for simplieity.
N We shall prove that ¢/ cannot be an algebraic integer,
TTIUb ariving al a contradiction. From this it will {ollow
“that 1, ), ---, A" ? is an integral basis. Let 2 = a/A =
6/l — ). Theng = 1 — % 501 = (J - EI')p, o’ = (z—a)".
@ 4
Hence a/A salisfics an equation

g(x) = p ™t + p(-) +a" =0,

N\

«\,

¢\
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where pta. Since pta, the polynomial :e:”_lg(i) =g !

4 pl--) + o is irreducible by Eisenstein's eriterion.

TTence g(z) is irreducible over B, Since it is primitive and

its leading coeflicient is not 1, its root a/\ is not an algebraie "\~

integer. This prox es the lemma ’\
Sinee 1, X, -- -, A" " is an integral basis, so 15 1, [, v

& in view of the relation (6.7). Combining ¢ ‘%‘luut

with Theorem 5.12 we arrive at

Turorem 6.13. The set 1, [, el ®is ?}Séegrcﬂ
(— D7y

for R{L). This jield has dascmmmant 1)0\‘\\{
N
'\éz
\(“}
(\, Ny
www. dbraulibrary. or‘guff'
&N
\\3\;&
A\
<&
e 2\J
-
e
NG
O
,\’g,
o’



CuapTER VII

AGITHMETIC IN ALGEBRAIC NUMBER FIELDS

1, Units and primes. Consider the ring of all algebraic
integers, and let us try to model a theory of fa(,touzatlon (N
in this ring after the pattern of Chapter I. We might ::m{
that o divides 8, written & | 8, if 8/« is an algebraic mf\egar
¢ix o wast if € divides 1. a is a preme if it is not zem or 4
unit, and if uny factorization ¢ = B into mtcgels\mphcs
that either @ or v iz a unit. \ )

This attempt, natural in view of uurx@rﬁel work, i3
unfortunately doomed to Iailure bm*m}qc there are no
primes in the ring of all algehraig mtf %‘elasr'yfgn 1et a be an
integer ditferent from zerc or a umt Ther we'ean always
WIThG o = ‘\/o: Va I a ‘—a,t"lm{lE"z p(x) = 0, then Va

satisfies p(z?) = 0, so 4/adtan integer. This forces us to
abunden the definitions jlst given. '

Tnstead, let us conﬁn\e our attention to the ring of all
infegers in w ﬁm&\ﬂgebmm number fidld K = R(#).
This is in fact what we did in Chapier 1. The definitions
given ahove \\dl}now have to be altered. a divides 3, o |8,

i §iais 'm\nfmm of K. eisaunitif e! 1. ais a prime
it is nat i?-»fo or w unit, and i any factorizalion a = Jy inlo
inlegéis of K implics that cither @ or vy Is & unit.

W i) these definitions factorization of integers m K into

a\ &b product of primes is always possible. This we ghall
\('r]_h' immediately. On the other hand, as we saw in
Chapter T, the ving H of all integers™ in R{x/—=5) docs
not have the property of WIPUE factorization., Before
(G estigating the cause of this phenomenon and the

. FThat o actuallv conatitulesthering of all integers mR(\/—B)
follows from ‘Vheorem 0.6, sinee —5 & {4k
71
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method for remedying it, we shall prove that 1w X [ac-
torization into primes is possible, whether or not it g
unigque,
If & is an infeger in K and & iz of degree » over &, then
a has n conjugates « . -, w, for K. We (l{zuu.e thea
norm of a, written N(a) or N, by , ™
‘\‘,l
Noa = a»r ap .
LEyaa 7.1 N ie o ratdonal tnleger. {
Let f(x) be the feld polynomial of a {ag. de}mml inn the
proof of Theorem 3.10). Since f(z) ig A power of the
minimal polynomial it has integral e.oifﬁments. Hence
_]F(;I,‘) = xn '_"l— a‘r—lj:n ! ‘I" e + a{h‘s}
www.dbr aullb_‘apy qr‘g;!-jpl & — ) - (v — add,
where g is o rational mtecrer’ Ihen
AVCI = C\‘.'J_ ‘4 oy = (—l)ni‘lu
Levya 7 ._’\T(o:;j‘r\L Na-Ng.
Tter, o, \\oev- 81,8, -+, Ba ure the conjugates of

o and 8 respectively for K, then auBy, cufls, -+, a3, are
the comugaﬁes‘of a8 for K. This implies the lernma.,

me\& ? 3 « ts ¢ unit n K 4f and only of Na = 1.

K\a 13 a unit if and only if ! 1. If «|1 then Na | [,
Nens= 41 If No = =1, thenal,---,oe,,|_l,and.50a|l.

o8 TasoreM T4. If No is @ rational prime, o s prime in K.

o”\' w4
3

For if @ = By, Ne = NS Nv. Since No is prime, one of
NB and Nv is =1. Henee, by the preceding lemnma, one of
3 and v is & unit,

THEOREM 7.5. Frery infeger in K, nol zero or o untl,
can be factored mto the product of primes,

If @ is not already prime writc @ = 8y, where neither 8
nor y i a unit. Repeat the procedure for 8 and v, and

<

|
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eontinue in this way. Il must stop, for otherwise « =
v v+ e where noiz arbiirarily large, and then | Na | =
[Nyl oo N can be made as large as one plesses,
since ench factor | Ay, ! excecds unity.

Conouuany 7.0, Lhere are an dnfintte number of primes O\
e an algebrade field. A\

The same argument used in §1 of Chapter 1I shows that,. \ “
there is an infinite number of primes in K if there s ut 1eabir 4
one. But there is at least one, For the number 2 certémi‘y
holongs to /) il by Theorem 7.5 1t hus a prlme La\ctm

We shall resume the question of uniqueneésglof fae
torization in §3. ) \\,

¢
2, Units in a quadratic field. To 111u::1ﬁ1te somn of the

maton 1l of the preceding section, wo “shall diseuss the
problem of determining TH(“ﬁﬂﬁka"Ihb araeRdnic Leld
RVDLUa=a+5 \/D 8 ..m'mteg,(}l in R(x/D), then

Nee — {a L—FJ\/J’)\(C&—ZJ\/D) @ — Db

This reduces the pmbi ot of detvunmmg the units to the
solution of 1he (‘qu‘m\on o — Db = =+l
D (H the integers are all the numbers of the
form £ —|— ) qy 4‘) where I and m are rational integers.
Thew to rl&LNmme the units we must solve
{7.1) \~' ' — Dm' = 1
O .
Tm ratmrnl integers &, .
'\’H D = 1{4) there are in addition to these the integers

{4+ m \/ 3
umt.s, come from the solution of
(7.2) £ — Dm’ = 4

in wld integers {, m.

where I and m are both odd. Then all further
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Suppose first that D < 0. In this case the field R(\/D)

"is called imaginary. Note that the left-hand members of

botk {7.1) and {7.2) become positive, so the minns signs
in the right-hand members must be dropped. Then the
unitz are obtained from F— I = 1 and, if D = 1(4),

2 F . &
also from £ — Dm” = 4. Bince —D > 0, each of these
. - Y.
cquations ean have at most o {inite number of solutiongy

We shull determine them explicitly, first stoppifl 0
remind the reader that D ig square- -free. ‘

[t/ < — 1, then ' — D’ = 1 has only t]w solutions
l=xl,m=0;iD < — 4,1 ~ D" = i»}}lbo has only
these solutions. Henee if 77 < -~ 4 the ohl¥*units arve £1.
It remains to consider the cases D) 51, —2, —3. The
first of these corresponds to the f&ldYR(), and we have
already proved in Chapter T that\the units in this field are
=1, =iwBscohdbelibinoy g —2 £ 1(4) the initial
o vmrk of  this pamgraph, eho\\- that the only units in
R(v/=2) are 1. N

We turn our attenfion to R(n/—3). Since —3 = 1(4)
we can expect in as{c’h‘cmn to =1 further units arising from
the solution ef¢f - 3m® = 4. This has solutions (1 1),
{1, —1) (—1\1 (=1, =1 “30 the unite in {4/ —3)
x/_ 3 —1 /3
1()(3'-;4\f:1::I:] and s 2—‘*—'r—{—l

\Q‘HEORL\I 7.7, The quadratic field R(N/D) where D s

il,

. Note that thev are the

* nmafwc and square-free, has only the wunils =1 wunless

L = —1, in which case there are the additional wnits 27,
or unless D = —3 4n which case there are the additionul
Units
12V ey
) — 5 =,

But what if I > (), so that the field is veal? The situation
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becomes more complicated than in the imaginary case,
and we shall content cursclves for the present with a
solution for the case D = 2. Since 2 # 1(4) only the
solutions of (7.1)— that is, I — 9m’ = £l-—concern us.

Leyoas 7.8, R{7/2) has no unit hetween 1 and 1 + V2.
For suppose that e = 2 -+ ¥ /2, wherea” — 2 = £1,

lies between L and 1 4+ /2. Then 1 < e <1+ &/ 21
— 1 = "'}(

nd ginee & — = T a . Al

and gincez — 7 V2 =1 A2 1< —y \/2‘{

v —
Adding these inequalities we geb 0 < 2z < 2"‘—1> V2,
0 < z < 18 Since z is an integer, ¢ = 3NBut thep
1< 1452 <14+ 4/2 whichis not,pb%ﬂ)le e any
integer 3. ' 'S v
Observe that one solution of I - = x1is (1, 1,
sothat A = 1 4+ 4/2is a llmaituw,q}ﬁr:'huljbl‘ary.01‘g.in

Turonsa 7.9. R(x/2) has giinfinite number of unals.
They are given by £0", 0 = (T,'éi:l, 42, - ~

To prove this note fiust that all the clements of R{(+/2)
are real, Henee i \Lt\,n. it in R{+/2) it is positive of
negative. p

Suppose e > OpSinee A = 1 + /2 exceeds 1 we cab find
ai Integer » a{uﬁ That N < e < ATPLTEA" < e <A then
1 < e N3l 4+ /2. But N(ex™) = N{e/N =1
since e.ant’n are units, Then ex " is a unit between 1 and
i ‘|‘~:§/2, eontrary to Lemma 7.8 The only alternutive 18

,.\E:"%"?\“. Hince 17¢ and —e are also units, the proof
fomplele.

In o later Chapter on units we ghall show that every
algebraic number ficld except B and the fields uf_'fhcorem
7.7 hag an infinite number of units, so that R(A/2) is more
typical of the general case than the imaginary quadratic
fields, The proof must be ]‘)(_)st-ponecl as too difficult ad
this slage.
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3. The uniqueness of factorization*, IL has already
been observed that Theorem 7.5 says nothing about
uniqueness (that is, to within order and units) of fac-
totjzation into primes, In order Lo understand how the
failure of uniquencss can come about, let ug cxamine
closely the integers in R(n/—5). As we have seen i)
Chapter T, O

21 = 8-7 = (1 + 2/—=5) {1 — 2/ 8%
where all the factors which appear are primo};,\ “We then
have the following situation: the numbén™3, a prime,
divides (1 + 2+/=3) (1 — 2 /= 35)Huk fails 1o divide
either factor in R(+4/—5). That thig&ittumstance cannot
come to pass in R or B(Z) was already’proved in Chapter L.

Int order to %wg J_Ia.iln this situstioni’™we restore temporarily
the defimition uﬁ a&]é?gl?;r%r E}%ge?ll at the beginning of §1,
hut which was subsequenfly abandoned, Let « = 1 +
245, 0 = 2 4+ v/~ 5¥hen

' o ~

. '—<\*’r’?\/ —5,

are integers oLR (1/ —5) It follows that their square rools
& 3 AN

\_/X - "—i\az‘e irtbegers, but these inte gers aronotin £( ~/ =5}

(wb_q,%?{ In other words 3 and 142~/ — 3 arehoth di‘vi:-;iblE_‘
(inthe extended sense of “division”) by an integer v/A
owhich is nof in B(+/=3). Moveover, sinee

| D
I
)
|
]
a4

N
\

M N A I CEITE )P
o VA VA

any other factor common to 3 and & = 1 + 2 4/ —3
divides 4/x.

*The malerial of this section is adapted from Chapter ¥V of
Hcoke's book Jisted in the hibliography.
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Similarly Tand | — 2423 huve the “highest common
factor” 4/x, where k = 2 4+ 3 4/ —5. :

A simple compuiation shows that
1+2v=5 = ViV 3= VIVA
I — \/f?.._}='\/§\/_—1’ 7——"\/;\/5 '\s\.
where the hur denoies the complex-conjugate. Then ‘)L\ ’
ean be factored, but not in R{{/=3), as i ;’n}:

21 = VA VI ZE V=T \*

and the vartous faclorizations oblained in 1?\'\/ a) come
from paiving these fowr factors in differendt’ r?*a\'

In summary \

1. Prime numbers in R(4/~3)w hmh ‘are not associabed
(that ig, whose ratio is not Wipithreahibkary avgommen
factor which g not in R{(~/—5R*

2. The totality of intemart in R(4/—3) which are
divisible by a prinie pihber o in R(y/—3) need not
eoincide with the tofal{lyof mtegers in &2 {~/—5) which are
dn wible by 5 iu rtﬁ\\ﬂ o not in R(\/ 3) and not a unit.

=14 2+/L ,3 is prime and +/n divides both « and 3
bub 3 is not digsible by a).

It ﬁpl“‘aﬁ“ihvn that it an algebraic number iwld K
ihe priied dre not neees ssarily the atoms from which all
the ih%getw are constructed. In R{(+/—35), lor example
bslPng to he nec cessary to enlarge the ring of integers to

”‘11—1?111(1@ stch “ideal” numbers as v/, /% which do not
otiginally belong to it. But how shall we characicrize
those numbers whieh must be sdded to K7?

Buppose an futeger & is a passible candidate for admission
to K by virtue of being o common factor to twa integers

relatively prime in K. Consider the fofality A of oll integers
K which are divisible by £ (in 1he extended sense). [t

i
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has the following property: if o and 8 are integers in A,
so are all integers in K of the form Mo 4 g8, where & and ¢
are also integers in K. Any set of integers in K with the
latier property we call an ideal.

This suggests the following procedure for answering they
question raised above. Let us consider any ideal in K gnd
{ry to prove that it is identical with the totality of inteeets
in & which are divisible by somc fixed integer & ng}ﬂﬁeces-
anrily in K. If we can sccomplish this and¢eay) show
further that £ is in somo =ense unigue, théfn we have
charvacterized the missing integers baN(tneans of the
ideals. This is the attack we shall pursueh the suecceding
chapter. K7,

But this poses another problemyIf we are going to make
ideals a substitute for integérs,” then the problem of
factorization GF5H .é:%)eri'as"}%?s" ¥8d to that of factorization
of ideals. As we shall sec, :thefe iz a completely saiisfactory
arithmetic for ideals, and by means of it we shall finally
settle the problem efunique factorization.

e)

4. Tdeals afan algebraic number field. Let K be an
algebraic pwmber ficld. A set 4 of integers in K is an
tdeal if, {0gether with any pair of integers @ and § in 4, the
set {Ll,‘{t}“ eontains da -+ B for any integers A and y in K.
A geff integers w1, v-- , @ in A i3 said to form a basis

A il every element @ of A ean be uniquely represented

w3 the form

7.3y a = ot o s oo

whore the e are rational integers,

Tet us denote by (0) the ideal consisting of 0 alone
We shall show that if an ideal 4 = (0) in » fleld K has 8
busis wi, ---, ., then r must equal n, the degree of the
ficild. By virtue of the uniqueness of the vepresentation
{(7.3) thesel wr, -+ - , w, must be linearly independent over
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E. Hence ¢ =2 3, by Lemma 2.1 To show that v < » i
impossible, let 3, , - - | 3. be an integral bagls for X over
B e s an clement of 4 different from zere, then
e, -, e, nre nearly independent and belong to A,
On account of thehr lnear independence they form a
basis for A, Moveovey

n
= E fhijwi, J. = 1) Ty RN
r=1 o
where we define w; to he zero for r < 3 < n. Then )
! o \'.
;\[O’,ﬁ}\ » T (]‘.d“] =1 I A[wl: Ty ws‘::r':.\

But L\[le v Wn; = —\[f«-‘L; e ’ Wy . 0, \l~— 0. Henee
AaBy, -+, w3, = 0, in contradiction tothe Tact that the
discriminant of w basis is never zero. Ib0llows thut r = n.
To prove thut an ideal A » (0) devessarily has u basig
®e can imitate the proof of “ThENawibernsider all
sets o, -oo, o, of integerssh® 4 which form & basis
for K; the numbers af;, ~8?, aff, which occur above
furnish an example. Byl bemma 6.8, Alay, - -, ol 18
dl“ajb & ralional 111%&\[ not Zero, H0 we can pick such a
et wg, +o- o, h@m\.{ for which | Alw, -, wa; W2
miniwam, This 3§ % basis for the ideal 4, by precisely the
same argumendas Lhat used to prove T heorem 8.9.
(omewel\\," every integer m K of the form (7.3} is
4. THIS o consequence of he definition of an ideal
ind fievaet that al) yational integers ure integers in X.
Thti"@"\"e have proved
\ “iIIEURL\t 710, 1 K is of degree n over R and A # ()
S an ideal in K, then there exist integers wr, -+, w0 A
such that 4 4s Me totality of integers of the form EH Cii ,
e ¢ being rational integers.
An ddeal A i said to be genernled by o, v, A,
“”tten A = {m, -+, @), if 4 consists of all sums
et Nice, where thie A, are integers, not necessarily 1utional,




=

\

80 ALGEBRAIC NUMBER FIKT.DS

in K. Obviously if @, -+, w, I8 o basis for A, then
A= (w, -, a);butif A = (o, - -, a), the a; do
not necessarily form a basis for 4. For example, consider
the ideal (2) in R(¢). This ideal consists of all integers
of the form 2¢ + 2b4, where @ and b are rational integers;

$0 o basis for (2) is 2, 2. The number 2 alone is not s

bagis for (2), RO N

An ideal A is principal if it is gencrated by a Mhgle
mteger— ihat is, 4 = (a). A\
N

Tomores 7.11. Every ddeal in R or in R {ai{ ;(Jr-;:?e.r:?fp(:.l.
There s an ideal tn R(N/—5) which is nob Erncipol.

Iirst, let 4 be an ideal in B. 4 co‘nsi’st.s entirely of
rutional integers. Suppose 4 = '(Q}}"t.hen it contains
an eloment ¢ < 0. In addition iteantains 6 — « = 0 and
0 — a = —a. 8o both +a belghg*to A, and oue of These
must bew posithreniBieacy. o8ientains positive integers.
Let s be the least posit-iy@zf‘jh’t@ger in AT # is any other
number in 4 we can hrrdq and r such that
<" n = myg + r, 0 << m
But every nL\n‘Qi}eE ns + miisin A, and r = n — mg
in particulay, Then 0 < r < m is impossible, by the choice
of # as the Jeast positive integer in A, Hence » = 0 and
n o= {nq’;;[fi other words, every element of 4 iz n multiple
of . Moreover, every multiple of m is in 4, s0 A = (m),

z;{xtec’lulmd.

M A similar argument applies to the ideals A i R();

:“\‘."i-ﬂ’l‘t' wstead of choosing the least positive number in A,

L\ W
) Y

) 4

we take the clement of lesst pogitive norm, and apply
Theorem 1.6,

On the other hand the ideal B = (3,1 + 2 v/=5)
is not principal in B(+/=5). For if B = (8}, then 83
Bl + 2 4/=7F). Since 2 and 1 + 2 /=5 are both

prime in R{+/= 3} and hence relatively prime, 8 must

£
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be & unit. The only units in R(\/—_ﬁj are &£1,s0 B = (1)
By the resuliz of the preceding section cvery element
of B is divisible by /N {in the extended sense of divigion)
gnce 3 and 1 + 2 A/—5 are so divisible. Hence 1/4/X
is an integer, so thut

N\
I 1 I ’\\
Ao =5 T Oy
2+ /=5 9 K\
s an integer, in contradiction to Theorem 6.6. It fO]LQ‘k}-’é’"'
that B cannot be principal in B(v/ —5). A

The reader may suspect from this last thep,@‘v that
unique factorization of integers in an algcb@ Jnumber
fields is equivalent to the principality of ,@l}ld&&ls in it,
This ¢onjecture will be confirmed in Clla}{m IX

)
iu ’Vl
\a\rww_i:l:prpulibl'ar‘y.ot'g_in

. ‘:\:“
&N
£ \®
\*::X
P
R\
L)
Py A
> N4
)
I
NV
/&../
:\\
A\
O



CaarteER VIIT

HE FUNDAMENTAL THEORIAL OF 1AL
THEORY

1. Basic properties of ideals. According io the ;Q %,
chapter, cvery ideal in ihe algebraic number f](lm\ I
can be written .1 = (e, -, ). Undor what, Mn -
stances cun we 3ay that A and B = (3,, - - mj‘fl are the

4

same ideal? The simple answer is given h\\ L
)

N\

N

THroREM 8.1, The ideels 4 and B ardWY sume if ¢nd

ondy if each oy can be wrilten as ' \\w

oy = z Ty ) \s

i)
www . dbraulibrary or an w4

and each 3; as
3; e ,'2 ﬂ’)t oy,

where the v, 6, arg; Hl(’{}(’f sof K.
The necessity og the condition is obvious. To prove the
aufﬁmeuvv let @ Z A be any element of B, Then

Z A Z Jice: = kaAJﬁj’i)ﬂ;', %0 Hmt- 3 s in 1.

Hlmllfnlv Cf\(}l T element of A i in B, Tlence 4 = 7.
Two ,,gltt‘g_,(‘ls o and 8 in K ure associated if o3 i+ a
11111t

\(\ombmm 8.2, Two principal ideals {a) and (3 are the
,mmr if and only if o and 3 are assoeiated.
*\iw‘ If @ and § are associnded, & = fBe, where e ig a uuit,
NV 1 . . . .
and 3 = cx(~>, where 1/e i o unit. By the preceding
<
theorem, (a) = (@), Conversely if (@) = (8) then o = 37,
8 = a8, where v and 3 are integers in A, lence o = (adly,
I = 6y, 2o that ¥y ;1 and /8 = + iz a unit.

52
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By the product AB of the ideals 4 = (o, -+, @)
and B = (8, -+, 5 in K we mean Lhe ideal

AB = (o, -+, oy, oo, Bl

in K generated by all produets a8, . 1t s easily verified by
means of Theorem 8.1 that the product A8 is mdependent
ut the particular sets of generators chosen for the JdeaJs
and B. It iz a direct consegquence of the deﬁmtlon ci’f~

pmdu( t that for any ideals A, B and C, A

ar ¥ ;

4AB = BA A\
(ABYC = A(BC).
O

Weo shall suy that A divides B, writtf‘n.:l\ B if an ideal
£ exists so that B = AL, A is then ca,l]e} a factor of B. A
theludes B, written A 2 B, if every {lement of B is con-
tained in 4. A4 iz then cafled" gbﬁ?f,%é’r' By BreNote very
earefully this distinetion we ar,e maklng between & factor
and a diviser, N\

Leanma 83,77 4 |Br(mml DR

In uthm words, adactor is a divisor. For suppose that
B = AC, where ¢ ; (y1, *+ =, Yo)- Then (B, --+, 8 =
lagyi, -+, wany oo, @ye), S0 overy B s of the form
Ze,)\s,ﬂf v @ \Z (3" Mivie; and is contained in .
Henee t@\}udes B.

Ly \?R\(&“S 4. A rational tnteger nol zero belongs fo at most g
(maﬁ&?mmbr’r of ideals in K.

d cfﬂf‘t @i, -, @, be an integral basis for K. Then every

\mte"el ot the field is of the form & = D :Zicws: , where the

€: are rational integers.
Suppose a is a rational integer not zero and A an ideal

containing it. Since =q arc both in 4 we can assume that
¢ > 0. Each ¢; can he written
c; = qu - Ty, 0§T;‘<ﬂ-,1§'5‘£n-

N ¢
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Then
= 2 (g +rdo; = a D qas + D7 = uy + 8,

where v is an integer and 8 can take on only a finite
number of different values (since 0 < r; < a).

Letd = (@, - ,e).Sinceaed, 4 = (a, --- cas, gl
Bach a; 18 of the form ay; 4+ 8; by the plevedmg IPIIld.i'LK *
sothat A = (avs + B, -, ove + 3, a). By ’Themvm

81,4 = (%, ---, 8). But 8 can take O on.lv a Nuite
number of different valucs for each i = 1, .. ",\“Hu 4 can
be one of only a finite number of ideals.

Tnrorem 8.5, An ideal 4 = () has grQ‘yaﬁmf{, risber
of divisors. A\

Let a be an element of A, Then’\“x:x = oelay -0 a) 08
inA. Iimﬁ:@bkﬂhbn:a&am&gm B But Na can belong io
only a finite number of idcalg) R “hy the preceding lewsia,

From Lemnma 8.3 we hmc also the

COROLLARY 8.6, A ideal A = () fas only o finite
number of factors, ,§

It s our purste to establish u theory of unigque fac-
torizution forddeals similar to that obtained in Chapter I
for the rationsl integers. The role of the units in the
latter b sofy will be assumed by the ideal (1) -that

\ fing of all integers in K. The ideals which take
TGN the function of the prime rational integers are
n.i‘rural ¥ those idcals P which huve no factors except

\P and (1). It is customary in the classical literature to
\

call such ideals “prime”, but in modern ring theory the
word “pritae’ is resevved for anolher property of ideals
which will be mentioned subsequently; so for the presend
we shall use instead the word “irreducible”. Then an
ideal P is drredueible i it has no factors except £* and
(1). What we shall eventually prove is thal avery ideal
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in K difterent from (0) and (1) can be represented wus
the product of irreducible ideals, uniquely Lo wishin order
and to within multiplication by (1).

We =hall give two proofs of this important theorem: a
modification of a classical prool based on ideas of A
Murwitz aml @ modern proof due to E. Nocther and
W, Trull. These iwo provls will be given m the fnl]omn;z\ )
{wo sections, which ean Dbe read independently of 4k

i !
~

another. . N

T 35 usetnl to mtroduce two further kindsg QT ideals
which will eventually turm out to be equit aﬂé}rt to one
another and to nreducible ideals. An idealdis maximal
if it has vo divisors except {1} and ;L,\\Hlat is, if it ir
mchided in no farger ideal except (N Xr{'idua] P different
from {0 or {1 iz p:zme 11 1t has {he’ folim\mg properly:
whenever o pm:{uc’! of integirs ,%*ﬁ”&&P’P‘ ¥iPYEAher v o7 8.

Throny 8.7, An ddeal IJ ﬁ?{ff?mi from (0) or (L} i3
waxinied 1 vnd only if o i reme.

Fivst suppose that £ (wr, -+, @) is masimal and
191 it contain va, Ifq‘r dontains v we are through. Suppose

1 does not muh}\ v; we shall show it contaius 5. Let
P’ = {ay, st ’}f} Then P* 2 P. But P is maximal,
Ko P s I f” = (1}, P = P is impossible, for then vy
b{‘kmoa f'\f’ Hence £ = (1), so that 1 is containe ul in £,

L tdf\h{‘t efore be writlen in the form
i \1Q1—+““Ta\as+\'}"

;'\.%;'cf 1h:u

%

)~ 5= Oublan + -+ Oudlas + Md).

Sinee -, a, ond ¥ are in £, 5039 8. [Tence P 1s prime.

Conversely, lot £ = fag, -+, ) bea prime 1deal.
Let " o p, P % POWe st show that P = (11, Let «
be un integer in &7 hut not in P. Form its powers «’;

they are in .



5B THEOREAX OF LDEAL THLEORY

Tt wy, -+, we be an integral baxiz for K. Lot 3 = 0
he any infeger in P, Then 283 are in 1, g0 that P contuins
8 positive rational integer a. According to the proof of
Lemma 8.4 each inleger in A can be wittten in the form
ay + D iy ra,, where cach of the r; cun tuke on only o

finite number of different values, T particular cach q':\\

N ¢\,
s of the form P
. L « \J/
1 1
o = ay; + 2 : P :N:‘

Then &’ — @y, can take on only a hmle numbw\ﬁ‘ d]ﬁ( rent
values. So there is a paiv of integers &, I, ASe" ’? stueh that

@ - ayy = af -- a-'y;j,*\\“

I . . - K -

@ —of = ai"y- — ) s P b}ull}! cholee of . Then
1 ki 2\ . -

o' (e — 1 m PI*Lb‘wmfe f’ iz agrime ideal, one of the

. W u 1ary (V] . o

two factors of a,ncfl %1{21‘3 be m F.
Nowal = aa - o fctDU’tﬁl be in £, Tor otherwisc one
of the factors & would ba,.fmd a wag chosen ag an integer
nol in £. Henee o' I i in . Sinee P D P, A |

#n P But every p\\\u of o ixin P’ " in particuls:,
Tence —1 bel(n&@:s to . %o that o= (11, Tt follows
that /* is maximal.

CoroLAlY 8.8, I1 P is o marimal ddeal and P D 0B,
ﬂi(’nz")‘ﬁ\tol PR

li\( 4 woe are done. Suppose o is in .4 but does not
bl“h\l}gj to PoIf 8 s in B then of 1s in P, for £2 2 L3,

Bt P ig prime, according fo Theovern 8.7, so that I
£\ g :

N“eonlains 8. Hence every element of B iv confained

N\

P.rPOB.
2. Theclassical proof of the unique factorization theorem.
We begin with the following lemma,

Lisists 8.9, Feery wdeal A oifferent from (O and (1)
has a marimal divizor.

<
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By Theorem 8.3 the ideal A has only & finite number ol
divisors. Ay divisor B of 4, B 5 A, has fewer divisors
than 1, for sy divisor of B s a divisor of A, gince 8 D 4,
and rmoveover A hag a divisor which B does not, namely A
ECIR

Among the divigors ol 1 choose one different from (:U\’
with the smallesl number of divisors. Thig is pomble \hv
Theorem 8.5. Call it 2. Then /7 i maximal. II it Ex\e\‘o not,
then there would be an ideal 7 £ {1} such ‘rhm B P,
1" > P But then P has fewer divisors thcm,P ‘&nd PrDA,
contrary to the choiee of P.

The following lemmas will be uw,b.ﬁo establish the
converse of Lemma 8.3 \\

Lyatvwa RO IS
www dbr‘auh]’bl ar y org.in
.F(J--\ = 6::4/E + 5??’&— v + + 50 tlam 7 U)

s a polynemial with all z‘ts.wrﬁi( fents algebraic inlegers and
p is une of its roote, thew all the coefficients of the polynomial
Jiey e — pare aig{e«bﬁwzr wlegers.

By Theore \{)r §.p i3 an algebraie integer, Tor it
satisfios the deuation

¢ . o1 m—1
ALY S B Y S I ol & = 0.

Thededrma i certainly true if m = 1, Buppose it has been
4 . . - e
catablished for all polynominls of degree <m — 1. Since

“t

™

) \ ole) = fix) — ™ e — p)
\ N
is of degree <m — 1, and since ¢{p) = 0, the polynomial
o) _ 0, e

= p Xr— 0

has integral eoeflicients. Then so has flx), v — p. This
completes (he induction. '
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Lamna 811 IF () 45 the polynomial of Lenane 500 and

flay = fule — @) o0 (@ = puks

vy

then 8,.py -+ pr 18 e algebradc infeger for o — 1.2, - e
For by successive upplications of the preceding lemmnia, NN

) \i\

;

= bl — pt oo Lo — BN
O L o1 ) \,u..;

(? - JO.I——J.r e I::“-'I - pus)
ls only integral coefficients, ’>\§

The next lemma i a genevalization of Pk?\‘r of Thioss
{Theorem 3.67.

Lxarva 8.12. Let {/’\\'
plz) = ot . o q 4 - }
www dbraulibr a;:tya c])l_g_:& + PN
he: pofynomials with inle r,rm"f .rco.nﬁ clends, a,d, #= 0. Lef

) = Pl Iq(ib '\/g R I - - e = e

I & is an Mﬂr’{&}?f(h that all e/ ave integers, z0 ore
O‘” [ L i '5‘

Far ,suppd“e

N\ N s,
\ ¥ gley = 3,00 — 6y -0 (2 — ol

hax integral eoefficients. By Lemuna 8.1 every product

ey 3,

3 TRay Pag ttt pe Ty T 00 Ty,

(8.1
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i@ oan dureper. Bat ace, and 3578, are elementary sym-
metric funetions in the p; and o, respectively, so that

2 7 R P 41 34
& g o, 3
. . . . » a3 . O
i g sum oof rerms of the form (%.1). Hence -——‘6— is &b
O
- « \J
algelraii wteger, \

Trrouwen 818, For every irdeal 4 52 (0] therg :«,\}m sl
B oo (0% soeh that AT ds prineipel. Tn fm’f\m\mn find B

:

st thad AR = (), wheve o i o ralional inddyes.
' \J
Lot b — den, -+, a,r and define \:\
HEN, | (A }J L .
Gt = wyw A as i 1, -+, n
! 0 T il dblati bralydrgm v
whery L=l e },‘.ugz.,(hc coujugates of «; for K.
By oan argument now familiaft the produet
. ’:::v . o
Fiody = gl - - ot} = Z [
\

s o polvions] {[h rationaul inlpﬂml coefficients. More-
over i f‘l‘?\\\ here we take pi) as the polynomial
having the Qngm al @; as cocfficients. The quotient

P \4;
x:\m/ }E(E \ - I";'Jj;:l
\V
1& =84 - Faus”

:\‘l‘mw coefficients which are integers in A
}M Lel o be the greatest eommon divisor of the e, so thatl
Flrt e is primitive. Define B = (3, -+, Bl We shall
show that AB = (o]
By Lemma 8. 1') @ divides alf @8; . But 45 is genceated
by all the products a8, . 1Tence (@) 2 AR, Ou the other
1lamti, sinee ¢ 18 the greatesl conunon factor of the oy,
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the vationst Integers e /g ave relatively prime, Phen there
exist infegers ry such that*

= ) ay {— . @ = Q2 .

But each ¢ is, by its definition, of the form 2 A e 8,
s0 @ is of the form 2, (Z aih a3 Then o s i . iR
A8 D (a). So finally (o) = ARB. O

Corovuany 8.4 If AB = AC, 5= (00, thon B\ €

Forlet AP = (8), a principal ideul. Then ARIE (D,
(8) B = (&) (/. Then & times each integer. B equals 8
Limes some integer in (7, so each mteg\i, of B i in £
¢ D B. imilarly B D (/, 50 that B /{5

Conortary 8.15. {(Converse of me:ea, 3 ST B R
then 4 | BWMeClrmJPFE&EHJ'??\YQ‘r&JE‘?Gr ts @ factor.

Choose D so that AD = g&} Wince A D B, AD D BI);
this follows [rom the d(‘flmfmn of multiplieation of ideals.
Write BD = (p, -+ pf,,}. Iach p; is contained in 4D =
{3}, and i3 t-herel'ur(;{&&[hv. torm 6. Tlence

BID = (3) (M@ - Au) = ADOL A, oL A
By Corollaryg B4 B = L O N S R B
(URU;I»\NY 8.16. An ddeal is wmarimal if and only if

it 18 arné?iwmb?e

l‘x{k 3t has now been established that factors and divisors
fuu\\t; e same, so that an ideal which lacks one lacks
\{he olher.

Lumyva 817 47 B4 and B = A, then B has fewer
factore than A.

Thig has already been proved In the course of estab-
Hshing Lemma 8.9, since divisors and factors are now
known to be the same thing,

* This ean be proved in_the same ianner as Theorem 1.2.
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Lesya 818 Every ddead not {0) or (1) can be factored
mto the product of trreducible ddeals. ' '

By Lemme 8.9 the ideal A has a maximal divisor 7%,
which by virtue of Corollary 8,15 is also a factor. Then
A o= 4y 1 4 0s (1) or maximal, stop here. Otherwise
repeat the proeedure with A, = Peds to obtain A -——‘
PPy, and eontinue in this wav. Fventually the pm«
cedure must stop, sinee cac: hoof Ay, _‘12_. v iy ld& its
predecessor, and so by Lemma 8.17 has fex\er “tafctom
than the predecessor. We can (:r.mch_ul(s that 4 .’:11!’1179 -
P, where cach I, is maximal, By (‘()1'011:11'_\;'".‘8\‘16 each £
is reducible, and the lemma ks proved. s

To prove the unigueness of the fad L\?ﬁm’rmn we shall
e the followipg conscquence ofy (“4}}011'111(? 8.8, 814,

and N1, OO
W W dbrauhbl ary.org.in

Leaain 81G. If P ds on ?ffr"(f?:(‘thff’ ideal and P | AB,
then 12 Ao P B .}:’."

THronmm 820 (TheFundamental Theorem). Beery tdeal
waf (0 or {1} can é)f\aacfomr’ into the product of trreducible
wleals. This fm-k(\ Stion 45 unique except for the order of the
Jactors,

The fix ~t\'p"11t of the theorem has already been estab-
lished : 14\1..4\mm¢ 8.18. We turn to the unigueness. Suppose
thut Th‘c- idenl A has two factorizations into irreducible
ldenls

:'\'.7\.’ 2 A =PPa-ee Po= PP Py, 82

) By Lemma %.19 the ideul 12| must divide one of the £y,
say 7, Then P; P » 71 O P, . But P is maximal, and
Pl (17, so that P, = F1. By Corollay 8.14 we ean
divide out P; in (8.2) to obtain

!

By Po= Py Py
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We can repeat this procedure until all the faciors on the
left-hand side ave exhgusied. Bupposc rtheee remains o
factor P; on the right-hand side. Then 27 71y /1] D {13,
P! = (1). Hence all the factors on the vight-hand gide
are also used up, so that, alter some resvrangement of the
order of the £, if necessary, £y = P17 = 1 - anr[‘
# — s The proof is complete. A\
O

3. The modern proof. The following version fr}lyﬂ‘fﬁ;ﬁ the
outline given by Ore in his survey (sec the bihlpgruphy].
We shall not make any use of the resulfs e in §2.
Instead we shall proceed divectly to o prodNY u modified
form of Theorem 8.20 in which “irred 1_1{;'1&}:»"‘ - oreplaced by
“maximal™, As u consequence of this e all 1hen establish
Corollaries 8.15 and 8.16. This \yﬂ]~éna];h\. Uz Lo rosiore
the word wireddbauiilear yagr g‘?ﬂaxi'}hal", aid this prove
Theorem 8.20 in ils final forrgSPhe reader i= rominded tlat
the last theorom we are ut, }1?}1;1“(-3-' fo wae itz paragraph
15 Theorem 8.7 which gs9tts the ecuivalence of maxamal
and prime jdeals. The(tqlivalence of faciors and divisors is
estublished in §2.%gid this fact we cannol use without
first offering 4 PIBOL.

Lianas 821“ Ln ddeal A not (0) or (17 is e divisor ol o
prodct ﬁr.:.‘ T Poowhere cach, P is a divisor of o, ond 48 @
m n.;r.'-i-{n@'l}dmf . I

15 maximal there is nothing to prove. I it i3 not
(r@xit‘nal, then by Theorem 8.7 .1 contains a product dy
w\:"\'::%nc-h that neither 3 nor v belong Lo it If A = (&, - e,

Y et

Bo=fag, a3, €= (o, L Y

Then A DB BD A, 0 3 4. Now repent the procedure
with B and €, and continne. At each glage the new ideals
all inchide A4 and theiy produet 1s imnceluded in 4. But Lhe
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provecure must stap, by Theorem 8.5, so that we finadly
reacly maimint ideals,

Let 2 1w o maximal ideal. We deline 77 as the totalily
of numbers «o in the field K, dnfegers ar not, such that
the prodiict em Is an integer (mot necessarily in 7% for
all numbwrs « in £, '

~~ ¢
¢\
N\
LEamys & ._./ AP s a0 mexeond ddeal, P wn!azm AL

aundbes wehich {siol an algebraie fnleger. (”"«

Lel. r. dilferent from zevo, be an integer zm'\ 0 and
consider the principal ideal (7). (r) inchudd e produet
Poooo Pl muxinal idenls, by the p u*(‘rlmﬂ lemma.
I there ave ~xeveral such products, pick/@m¥ for which 7 is
least. Now £ Dtz D P P, 5(3,}3)- Coorollary 8.8, 1°
eonfains one of 1he P{-w\m\-‘dgi‘m[&m%, Snglin maximal,
£= Fo 0 The ideal ) does a6l e fude Py - -« P, since
the product with the least uum.b(l of laclors was pleked 1o
begin with, Then y 0 BN mu‘rdm& an uiteger ¥ nol in (7).

Consequentiy 5« is n@than in'h‘;jer bul (r) D P P,
oD Py }us metnfx that if #' s in P then ?r ~ ig in (7).
Then =* v ‘= i ahholeger. Henee v/r is in P

If A is an Meal we define the produet _.-IP =774
to be 1l st 1l products of, where o s in 4 and 3
mEt 0N
m P x,\ )

L]*‘\(\lk R30I P s @ mawimal idead, then :”J.” 1= (.

I’QT A = PP s an ideal (why?). Sinee P mnldmb
\,,t D P B P i~ nmxunal sothat 4 = (NNor A =

7

s ~ Weassume that A = P. This will lead to a contla(hctlon.
Let o, .- .y }_)e 4 basis for £, and lel v = v/r be a

11.011—11110 g
Preducts

i I : fsee the preceding lemma). The
yzerare allin 4 = £ and 5o can be represented as

n
s = 3 ey,

i=1
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where the a;; ure rational integers. Then the system of

equations -
{au —vr + ety o =10
32£931 + (Gcz - ’)’1}1132 + - =10 A o
¢\
ity "|" e + (arm - 71)3:r.. = 1) ';:} ”

hag & non-trivial solution x; = w; , so the determifint

#O
| tn — 7 [5e3 T ) m}|
! O ey — Y1 - N\
| 7
[F ] 1) - 'H\a\ﬂ,ﬂ = 71 i

vanishes. Hence y; satisfies a mofis equatlon with integral
Ct}efh&mtdbmdllhrihm@fﬁ'e‘ ‘algebraic integer. This
contradiction leads to the ('on{,lu‘:lon A= {1

T 8,24, Eury adeol”:i not (0) or (1) 15 the product of
mazximal ideals, ‘\

By Le SN . oo P oof

mma 8284 includes a product F* 0
maximal 1deak{\and as before we choose the product for
which r is Ieast. We proceed by induetion on .

It Ayifdludes only one maximal P, then 4 = I and we
are GK)R‘B Suppose the theorem. established fm ideals
witteh include a produet of fewer than }}\uttorq Since

\3 S Py “PothenAP D P, - Py, hv Lomma 8. 25.
\ ¥ }hb h}pothomb of the induetion AP iz u produch

£ 3
O PP P;. of maximal ideals. Ry Lemma 8,23 onee more

v ffl Pip; .. PP, , 50 that 4 s a product of maximal
ideals,

LM 825, et 4 = P, .. Pognd B = @ -
be products of mazimal idoqls each #=(1). If B > 4 fhm
sach ideal €} occiprg among the P

at least qs many times 08 it
occurs in B3,
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Bince € s & factor of B 1l is a divisor of B {Lemma 8.3).
Henee € DB D 4 = Py --- P,. By Corollary 8.8, @
containg oue of the P, say P, ; 80 6, = P., each being
maximal and (1), Also

PIBDP'A =P, -0 Py,

N ¢
by Lemma $.23. The rvesult then follows by induetiond i/ A
we assume it to be frue when B ocontains fewer thaz??
factors. O .ﬂ

Leyuas 820, The representation of an ideal as\tke product
of meximal ideals 4s unique o within orden,
For suppose RN

= PPy P = QR

Then we need only a}ml;}cu,ahgimfﬁg‘adju&égynnl:;1. wilh
4 = B. As avesult of Lemmal®24 and 8.26 we have
TaEORENM 8.27. An z'rr’m{{z‘f?iﬁ’e-rmt from (0) and (1) can be
represented, wndguely a.';}c}.-rf from order, ns the product of
maximal tdeals. :
In order to prose the fundamental Theorem 8.20 it is
enough to %110\\%15_& the word “maximal” in the preceding
theoren: mn be veplaced by “irreducible”. Thisis | justifiable
if we eqiy pa tve that a divisor is a factor--in 0the1 words:
it B > '1\ then B! AL But this in turn follows from Lemma
82\501 We may write A = P8 .- Py and B = PP
. ~.;r, where the P, are the distinet mnmmai Factors of .4.
ANl B, and ¢; > f,. 80 4 = BC, where 0 = P{% -+
VP77 Henee the fundamental theorem is established.
From Theorem 8.7 and Corollary 8.16 it follows that
il‘reducihle maximal and prime ideals are the same. The
literature on algebrate numbers uses the last of these
tormg raost freguently, and in the sequel we ghall adhere
to that {radition.

2
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CONSEQUENCES OF THLE FUNDAMENTAL
THEOREM

. The highest common factor of two ideals. Lo Ltr;d
i be two ideals in the algebraic number fiold K. An ide ;tN
is #aid to be a highest common factor of 4 and B, )319 Jen
(4, B),if ] tand ¢ B, and if every ideal \\hluu. [ides
both 4 and A divides €. A highest mmmm\’f clor i3
unique, for suppose both € and D have {he rerisite
properties, Then €| and 1| . By Legaumd 83. 02D
wnd O 2D g0 that ¢ = D, R .

There is a simple way of obt: Lining. A, B, oas follows,
Let A fd’W&’pde aulibparynory. 'IB, B Detine D=
(o , - - S, B Tht—:n D = (4, B For clearky
D D A4, D OB that, L&Jmﬂzuv 8.15) D A 1B
Further suppose E |4, )‘f‘""}’?‘ Then £ 2 4, E O F,
se that E D D, he 1N,r £ b, 3ull another method of
()bt-a.inin;;j the high&;{ yeomunon factor ol 4 and & s this:

Let £y, f\l\e the tolality of distinel prime 1deals
“hmh oeeuT iR thv factorizations of both A and B. Then
e ::’}0“ <o U7 wheve ¢; is the highest power

(pns&;ib]_{ﬁ\gt}i‘o*) for whieh 277 divides both A and £,
.“\$~

TRROREM 9.1. Two ideals A and B have a wnggue lighest
({)PI\NFOH Jaetor (A, BY,
N Vi (4, B) = (1) we sav thal 4 and B arc relaiincly prome.

\ Tt 15 customary in this case to write aimply (A, BY = 1.

N\

We saw carlier {Theorem 7.11) that nol every ideal o @
ficld K need be principal. We are now in a position to
show that in any case an ideal ean abwars be gem-rl"zt-i't.‘d
by fieo elements of K.

“ Trtg eonvenienl Lo define 1l power O of an ideasl € as (10

a6
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Temara G20 1f 4 and B are ddeals diffevent from ()
there is an Diteger o in 2L such thot

(or) _
() 5) -

(M etz in 4, then .1 D (o), 4 | (@), so it makes sense to .

¥

spealk ol Lhe ideal (o) 740 “\' N3
It B = 1% then the lemma is trivial, for there we gan

take for o oy element of 4. 8o we suppose that B'\;’ésf 1.
Let 2. - - P, ht_é the distinet prime faciorg of B,
Lr=11n B =1 7>0 50w n(:(.‘.d.m(lj;ﬁnd an e

in 4 for whirh
18 \\'
() (O
(. | ,p) = 1i'\

Choose an mreger o in \:{“\{.\V\ilﬁgfiidi%taﬁ%oi%"bm sk
exist, for othorwize 42 D _{;AP i A, Then simee 4 # (3],
P, P D), and Py "\H This choice of « has the
desired property. Foresd D (a), A (&), so (o) = AC
for some idesl (", ",Jll":m\ (o, =1, for il (C, P} # 1,
Cund P have f‘ll\(" highest common fuctor P, Henee
(= PD, {aN="APD, AP {a), 1P D (o), contrary
to.lhe (_']'LU‘].(;({:E,;}:""-_\;.
If p ZpNAU s enough to find « o that
&

¢ N
(0.5 C2N - P mo= 1,0
:"\\:‘. A . .
\:w’CONhid(}l‘ he ideals 4 - — !;l P_ and P, . R‘\' the
y i

Prececding paragraph an element o, of (4, can be chosen
80 that '

(9.2) ;) o
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Nowlete =a;+ - + e . .Sinced i 4, , 424, and
each a. is in 4. Therefore « is also In 4.

If we ean show that e is not in AP, , then (9.1} s
established. For if (a)/{4} and £, have a common luctor
it must be P,, itself. In that event («)/A = P.D, (o) =
APLD, 80 AP, D {a)—a contradiction.

4

To showthat e = ap + - -+ + w,isnot in AP, ommw‘\ \
that cach a;, ¢ # m, is in ‘IPm,' : '\\,
APy - P P P WO
.ﬂ [ A ;= ! T = .-4.1’),,. R l_._ ——— " ‘."‘Mr),, R
(o) 7 [ Fi\ v

but o itself is not in 477, , by (9.2). O .
Tunoreys 9.3, Let A be an ddeal ffﬁ;}é;‘o, and 3 ony
non-zero element in it. Then we can ﬁ?‘i'z’é"}an.{x e A sueh that
(o: Wi w. dbraulibrary org.in, \J
Deﬁne B= (/4 Bvihe pmc;eﬂang!emma there 18 an o
in A such that

e

I (@) (8}\ _
o429

Let (o) = AC = (a)/4. Binee (9) = ABand (B, () =

the highest( ¢ommon factor of (rt) and (8} is A, By the
1emf1r|\5‘ pleoedm;:, Theorem 9.1 A = (a, 3.

(.)bs\cr.xj\tha.t we have made [requent use of the quotient

() Et\};ﬂ(zn a isin A, Tn the future we shall wriie this as

o/ and understand A ' to mean A (al. a iz in A

and only if A . Another notation is « = 0 (mod 4]

“Nor e = 0(A),

3

N

2. Unique factorization of integers. We reiurn now to
the problem of unique factovization of integers in K;
a question  temporarily  abandoned in Chapter VIL
Owr next theorem conflims a conjecture made there.



UNTQUE FACTORTZATION 99

TueoreM 0.4, The factorizelion of integers of K indo
primes is wnigue (to within order and unils) Of and only f
all the ilcels in K are prineipal.

Tlhat sneh a factorization 1s possible has already been
seltled by Theorem 7.5,

Fisl assume that all the ideals in K are prineipall ) *
Suppose un clement of K, not zero or a unit, hasy tW

faetorizations inlo prime integers: '.,}‘
N
_ ot ; IN ’
Oﬂ_ﬂ'l"'ﬂ‘s—?rl"'?rf'm;\'\.
Clearly v

03 (o) = (m) - () = m{a N

T =iz u prime JILT(‘"(%‘I@(%I@IIEQZP%C ideal. For
suppuse (x) = B Since B md C are both principal by

hypothesis, (=} = (8)(v) —v{ﬁy) By Corollary 8.2, = and
By ave associated, so one'ok B or v is a unit. Hence one of
B and (7 is the 1(1(\&1 (1), and (=) is prime. Then (9.3)
gives two La,ctuuzghbns of (a) into prime ideals. By the
uniqueness of f\'wrlmtlon of ideals we must have s = ¢,
and {7} = T*W after a suitable rearrangement of factors.
Morcoven, & 'i%, i a unit. This proves the sufficiency.
QUDIJ e, conversely, that factorization of integers 18
umflue\’ﬂ) prove that every ideal is principal it is enough
tﬂ'}g o that ev ¢ry prime ideal £ is prineipal. According
~t0 Theorem 8.13, P o for some rational integer a. Let
U NG = m be the factorization of @ into prime integers
\‘“ m K, Then (¢} - = () -+ (&), so that P |z for some
brime integer « in IL (We do not claim that (:*r) is a prime
Weal} 86 () = PA. Then = is in both P and A, for also
A7 By Theorem 9.3 we can write P = (r,7), 4 = (7, 5),
80 that,

(m) = (m, ) (m,8) = (m, 7).
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T follows that =
7|y oro|é.

We shall exclude the second poessibility. I =14, then
A=(rd={x), =)= P = Plx),sol” — (1} Thisis
impossible since P i prime. The only alternative is = v, )
But then 2 = (z, v) = (=), and P is principal, as desired \J)

We shull now present a eriterion for the peing "pas'u}'
of ull ideals in K—that 15, lor uniqueness of tlrmm‘m Jon
of integers. Tt i due to Dedekind and Hussce. .\

Tireowest 0.5, Keery ideal in K s pr‘?.'-m:iprrf s Foond anly
if, Jor cvery Lwo dntegers @ and 8, nedther NPro, sich that
B/ a and | Na! > NB|, there e.t;ia{‘:g}frt_r}rﬁ-‘x v ord B
such thal 9

w8, From the vnique faciovization

S\

www,dﬂrﬁl:ib\%ny.orgﬁﬁ) |2 N8,

Tirst suppose thatsevery Wl in A s principal. Let w, 8
be integers of the preseribd kind and let 4 = (e, 33. Since
A 1s principal (e, 8) &\(w), 50 every integer in .| is &
multiple of w. In pa{h\ular B = ow, NB = NoNw. §and w
are not axsoclatdd NGr n‘rh(‘r‘\\ 180 ,8 | o sInoe we know that
w o HMene (" \‘ w, < NBI. Buf w13
(e, 3), so a & oy — ’30 dnd ﬂlPi(fOlF‘ P A (a '

Nii. ta@l]v w # 0, since 3 = ow, 80 that | ¥{wi > U-

Congetsely, suppose the criterion to be sutisfied
let ’\—t\,_:e any non-zero idesl in K. By Thearem 0.3 we can
Wl it as A = (&, 8). Tet @ be a non-zero element of A

"T‘m which | ¥{«) . is least. Then 4 = (), forif + Is any
/ intoger In ;1 such that w & v we can find a combination
2y — woln A such that

0 < Nipy — va) | < | N I.
This contradicts the choiee of w, 30 there can be no ¥
in A for which o /7 4.
The criterion just established is unfortunately very
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difficuli 1o apply in practice. Sometimes it s possible
to apply it with 4 = 1. In this ease the field s called
Enclideas. The mumber of real Buclidean quadratic fields
Is fmite. {See Ilardy and Wright, Chapter XLV, for a
disenssion of this and the following remarks.} The {);ﬂ\.\\
imaginary quadratic Gelds R{A/D), D suure-{ree, pelieir
are Tuclidean are those for which & = —1, =2, 78 Nt
=11 In addition, the following salisiy the et #’.—’.f‘f-’m-'ml
Dedelind TTasse eriterion: £ = —19, —%Z%m%;fjf, —163.
It 38 known thet there can be al most ong whete rnaginary
quadtatie Neld in which all ideals ar(z.Qrim'-ipﬁ-ls and that
i it exists ihe corresponding 17 i3 1))?{{11’191‘i021ﬂ}" larger than

five billion! AN

In sumanary, the probler wlimique lactorization of
mtegers is now reduced Y ‘:g‘hm%]‘;&ra‘;momémew one i
far from completely solufils Nevertheless, as we shall sce
in the sequel, (he thegryol ideals bas far more imnportaut

consequences than Theorems 8.4 and 9.3,

48
3. The problem of ramification. Az we shall see later
it this chupéehy cach prime ideal 7 in an algebraic minmber
field & digddes oxactly one ideal (p), where p is & rational
I”'mlil,'r\this means that the prime ideals in K (.':;:,n.be
detegfa® by considering the complete faetorization
(NE" £y o P, ol each ideal (2 into prime iFlnszls £
Wb KL An important question which occurs is this: when
D toes (p) have repeated factor 7 und when are sl tht‘-_ P
distine1® Tn the former ease {p) s said to he m.-m.-z;ﬂ,fjd;
Otherwise gt fied. The ansser i given by the Fr)l]m\-'m.g:'
thearem of - Dedekind. (p) is unramified if and only }t
77 d,where d is the diserininant of K. A complete proof 15
(.iifﬁ'(:ult,* and we ghall prove only this part of the 1:'11901'1‘91‘01
i p 7/ d then (p) is not divisible by the square of a prime
fley ],

g oo T If.
Soe, For cxample, Tanduau's Toricsungen 1



102 FUNDAMENTAL THEOREM
Let « be an integer in K, and @1, -+, a, 8 conjugates
for K. We define S{a), the trace of o, by
Slat = @+ -+ + a..

Since — Sa) is the second cocfficient of the feld polynomial

for a, 8(e) is a rational integer. Moreover Staa) = aSal, O \

{or any rational number a. O

Now suppose that {p) has a square factor . We @11&11
prove that p | d. Let (p) = £~ *¢). Choose a 50 that“? 6w,
f e /|’ ee. Then e = (} and p 4« Moreover, ~>111L0~£’<Q o Q ,
P (cu , and (@) = (&), it follows thad m¥ o’ Bince
p > 2, a* | «"8" for any integer 8 in K. H(»Lﬁ\e 7! wd’, and
(af)”

—p- is an integer in K. By the t'Pmpﬂ% of ihe preceding

www dbraulibrary.org.in . \J
paragraph \

s ((a_ﬁ)?’f);ﬂ((aﬁ}’_fz
pe Nt T
is u rational integer, & t{that S((a7) belongs to (p). let
B, - ,8.be the‘\@njllga,tes of 8. Then

( aﬁ))p =3 (ahBl ol + - e “)'n
S @B () ot () T P

"\s

A =SB + oy

Where v is an integer in K. Hence (8{af})” ulso belongs to
\ (;0) for any integer 3 in K. Sinee {S(«f))” is a rational
integer, ¢ | S{af).

Now let wi, -, w, be an integral basis for K. LThen
o = 2. hwy, where the by are rational integers. Hinee
p 4 anot all the . are divisible by p. But

Slaw) = S (? fii w_i.-".ﬁi\) = E A Slon w).
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Sinee p | Slaw;), we can conclude that p divides the last
sum. For simplicity let e = Slew), and A = |ay L
We shall show that.p | A,

Let A, be the cofuctor of ax; in the determinant A,

Then
Z Ay E el = Z: hie Z Asyon = Ay, O
¥ i b i 7

N

Since p Aivides each sum Dy axdhs , p divides Ak; for caf%}fl g
But nol all the % are divisible by p. Henee p | A0

It remains only to identify A with d = { O wal.
Denate by wi” the conjugates of w; . By the Qultiplication
of delerminants

: 18] (n} ". 13 1)
d =1} —|u§'---c-:1”_,§+<.\'( SIS [-
~',x. H

, {n)

| o dbpaﬂh‘brarylor g @
o
- | T R = | Sore) | =

We have established th(' d{"slf‘(‘d result.
Trxorew 0.6 Ij;f}\/ i, then (p) is unromified.

Conrorrany l)\'\ Lel K = (&), where { is a promitive pi°
rout of nnaly g ;.Q a rational prime, 1f ¢ ds a rational prome
different fudey p, then (¢} s wnramified in K.

Thisdgna consequence of the faet that ¢ { o, sinee d =
[—Qc"\‘“” 7 (Theorem 6.13).

‘i\ Congruences and norms. Qur next aim is to elear the

\ua\' for a proof of the assertion made in Chapter VII,
“{hat an ideal is the totality of integers in K divisible by a
fixed integer (not necessarily in &), The reader will find it
useful at this stage to review the notion of congruence
disenszsed in §2 of Chapter 11,
Tet A be an ideal. We define o and 3 to be congruent
modulo A (written & = 3 (mod A ora = B4 ife — 8
I8 in A or, what 35 the same, i A | {& — ). The rules for



104 FUNDAMENTAL TITEORITM

operating with such eongruence stalemenis arve thosze
stuted in the earlier chapter,

If e is & Oxed Integer In I, we call the set of all infegers
congruent. Lo o modulo A a residue class module 4.« i3
called a reprasentative of the elass. For exanple, hy Theorem
741, everyideal m I nuust take the lorm G, and 3, 1, -+

m — 1 are reprezenlatives of (he s rosidue elosses rm)ril'h\

(). X O

Taeowea 08, If 4 7 {0 s an ddeal in K, f:’u:
residue elosses modalo 3 4s findfe. '\\

Aceorting to Thearem 8.13 we ean choddedan tieal B
so that A8 = (a), where ¢ iz 9 rational m&%m Tiu = viul,
then g = »(4), for A D a sinee A - 1?1 ihe mumber of
TE"-IdLLP classes m K modulo («) I*NT'ITA te, ag the prool of
Lemma §+4shapracdibeany i ﬁd}gmp les u = mczri (eri?,
it follows that the number 01‘ fesidue classes modnla 1 s
finite. 3

The number of l'(ZZ-?idUEi:&laSSE‘-S mor:lu!o A dx enlled the
norm of A, written A ov V(A I A iz princpal, say
A = (a), we writeg a!\(*(on) for the norm, ginee the notation
ANla) can be mk(n for the norm of the integer o, aud the
Lwo norms nidy not ‘oe the same in value, Observe that
NA = 11.,;11%(1 ouly if 4 = (1},

The N@M('r will recall ihctl overy non-zero ddeal his o
ba\”f)i‘mi(‘g(‘i:g (Theorery 7.10). We now prove o lrtle

l EMMA 990 If w, oo wy 18 an dndegral basis For the
\;"a.lgf.b;mc number field K, then eoch ideal 4 2 (01 in 7! fos n
basis oo, - - - | . of the Jorm
G = e,

oy = fmwr + g,
= b = :
e = ol T i Waniddy

where e w; are rational Selegers ond all the o, ar LIS,
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Lot 1 = (@), where o 15 o rational Inleger not zero.
Sinee o iz in L1, g0 are awe, - --, aw. . Let wm be lxed,
1 =< w = 5, Trom all the elements of 4 which ave of ithe
form a4+ -+ 4 Gpwe, where the ¢; are rational
integers and a,, > 0 {there iz at least one such element,
gince ow, aoll —ow, are in A), choose that clement

A
_ N
Gy, = Ll 5= 0 "' o '.~\\ -
Y \"/
for whiclt ¢, = o i lewst. The o, 7 = [, - a\301, 50

delined have vhe properties staled in the lommay
Tt the e form a basis [or K, by lho«m\@} a4, ginee

the determinant 2
\J
an 0 e 0 e
o D s 4
iz 23 =y }am R
---------- wiwwedbrallibrary org.in
| Gt ps oo a,w "‘

i different from zero. W ew'h(ﬁl show that the a; alze forn a

bd‘-\]‘\ fnl --l. .
Lot o be an mlecrek in <. Since the w; form an integral

hasis for A, we @\Q.m it

. |
N o= Do 1+ - + bnw?a '
~~,‘../

where the~b\§1e rational integers. By Theorem 1.1

0\50/ -
i"\{ E:‘M = i&aaann + oy 0 S Ta < M
HES) f’leJ arefore
..\ “’ o — fwo = @ = Ralfmer 0 T G
W ! ’ ’
= by + -0 + brjen— - Tawn

iwin 4. By the definition of .. we must have r, = 0; then

P .
& — :I?-,,{l'_q == {}]_U)] -+ - + bii—lwﬁ—l .

- . f H
Now repeat the procedure with b, Lo obtan

. " £
@ — P, — haage: = blen + + b awnoz,
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and continue until
o = hatty, — -+ — hay =0,
& = hon 4+ --- + Aaas .

Ilence o can he expressed in terms of the «; with rational
integral cocfficients. The representation i3 unigqne singg

the o, arc a basis for K. & ‘ /

This lemma enables ug to ohtain an explicit I{)lela
for the norm of an ideal. RS 5

Turones 9.10. I/ A 4s an ddeal m K and&r cee o, oty
is a basix for .—1 then RAS

N4 = fﬁ‘[‘?‘l. LR,
ri PN
ahere d as Zhr‘ i, crminbmn{ af K, ;" v
rauliprar

First note. that every bi)&f«fqé Iilm A has the same dis-
criminant. This follows imm* the argument used to prove
Theorem 6.10. Bo we can "ga?]\e for the basis of .1 the one
deseribed in Lomma 9 9. By formula (5.1}

.xphl e 0

A[a; y \i\ ap G 0 e .-".\[&:1 P wn]-

7 \J
P \,} | a1 Fnz - L

B_\_’:,;i'{h(:,(oyrenl 6.80d = Alwy, -+, w,l, 0 that

oo
‘\\\ Alar, v, @l = (auty - apel d.
The formula of the theorem reduces to N4 = oy - fan -
This means we need only show that ) -+ a.. i the
number of digtinet residue elasses modulo 4. Tor this it
suffices Lo show that
(1) no pair of the ayr -+ - o,, numbers

Fay _"' e + Futdn 0 S P05

is congruent modulo A ;
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it} every integer in K is congruent to one of these
numbers modulo 4.
To prove (1) suppose that

Pta + v + Fady = '-‘";031 + st + 'r:twﬂ (AJ}
where ) < 1, < 4., , 0 2 o < e . We may supposc thaty
&

f .
re > 4. Hence A\
, ; Dd
{rp — f”g}t’.u‘] 4o A (e — T‘n—l)“—"ﬂ—l & "g
+ (Tn - &Jn F= 0 A)
. . ¢ N
By e definition of @.. , o =T = 0, rau= . A similar
argument shows that r; = r; L b= woh — 1.

We prove (ii}. Euch integer o in L@jﬁeld has the form
= by o dbl‘auﬁbpﬁi‘f’ﬁ‘ org.in

for yational intogoers b; . Let & ,‘\

b “ﬁnama ‘I" Fu 0 S T <L Qag -

Then
a — hua, = @1 ¢t Browany + Tawn
Repeating this K}Qeeduw with bny , b s , ', We have
o }],}aJ, — oo — R = P R - T P

wheve 0) { ?,,., < G, 80 that @ = ren + -+ F Fawn
modulQ,,,
GQN%OLL&RY 0.11. ff A is principal, 4 = (a), then
& = | Nal.

\, ) Clearly @y, v, aw, i a bagis for 4, and
Alawy, ey aws] = (NaYAlwy, <+, @] = (Na) d.
Bui by ihe theorem Afaw, , -+, aw,] = (¢ FAY . Hence
(Na)* = (NAY. Since ¥4 > 0, the corollary {ollows.

5, Further properties of norms. In reading this section
the reader will find it instructive to examine each of our
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results for the speciul ease K = R oand to compare them
with the analogous work done in Chapter 11,

Lusata 912, The congrucnee
af = 5 (A}, (o), AY = 1.

has a solultorn & which is wnigue moduln 4. OV
Lot &, - -, 2vy be a complete residdue system modudo _.;1.\—\""

thut s, a sel of represeniatives, une from each rr-1C‘”Lie
clags. Sinee o = 0, thesel afy , - -+, afy, it alsoa .,m'nﬁ efe
residue svetem. For if af, = ab lhon A el :'\§~ 1, Thus
A& — &) sinee (o), A1 = 1, so that §8J 8017 and

&L o= L. Then amone the af; lheie 13 c‘\fle\k‘ one which i3
congrueni to 8 modulo A. \\ :

Turoreym 9.13. The congrucnce | A\ .5
wiww dbraulibrar y org.in {

= 8(44
has a solution £ and m?i’J if e O(D‘ where 1Y = e, AL
If there is a solution it is amigruf’ madido 1D,
If 518 asolution of th\conom(’m'(‘ thenr af — 3 = pizin
A, A p. But then ZQ“}: D ioyso £33, and 8 s in 70,
( onversely, mﬁ@ohe 7 is in D, Bv the definition of £

we ean find ofNn (o) and « in 4 %0 that «f -k » = 8.
Then af = ;3{{ 11
Tr af, mEhire both congruent 1o 3, then «{f — &% = 0,

Q\* E’\ Let 4 = Ddy, («} = DAy, where 2y and

Srelatively prime. Then

’

.»@41 DA — ), il ot — &), 4, (8~ & 8= £l4)),
Y and finally € == (47D},
CTuroreM 9.14. N(AB) = NA-NB.
" The theorem is trivial if either A or B is (01, Henee we
assume A, I = (0). Then, according to Lemma 9.2 it is
possible to find v in 4 such thal ((viid, By = 1, o
(fv), ABY = 4. Tet ayp, ey and 8, - -, Baw be
complete restdue svstems modulo 1 und B respectively.

/*“
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Then ne two of the ¥4.¥8 numbers a; + 3, can be
congrucnt wodulo 48, For if o + 3 = o + 4f7{AR),
then o -- v = & + 48 (A). But v is in A so that « ==
a'ldY, Sinee 4 and o are elements of 4 complete residue
sysbent, ¢ — . Hoenee (8 — 8’} = MAB). Since ((v), AB)
=4, - 10 where (O B 8o B (E — 3. lenee
=518 3 =75 "o
To prove the theorern it remains only to show that f‘a:t‘h ”
integer e in the field A is congruent to one of the T]Lmlhr‘r‘-s
ai -k vl modido (LB, Choose a; so that a; = (z(“ll Now
congicler ihe congrucnee & 72 o — ag 11’?} l:h\'lheorvm
9.18 it has o =olution sinee & — a, Is M NSy}, AB).

. " .1
Moreover £ can be chosen uniquely mo\fshﬂo | = B s g

is one of the 3. Then o = e 4 P8HA R
Y “ e dbr ;rqlrbral y.orgin

Cororrany 915, ff N4 is pmmr* so s .

Trrores 916, A i {L?h{}(’nlf nt of A.
Let . -+, ewy be o sqiiplete residue systeny; a3 1,
I TS P one L‘k\(l an that
L R ? €r11 + 0+ - + flava + 1) (H:
O = N4 (4

ConoLi ¥ 0.17. There are only a finite nwmber of
-irf{'a."\ %a\;'\;‘;’@p RorhL.
WA can belong to only a finite number of ideals

fLﬂu x84
\ lm WOREM 9,18 (Fermal’s theorem). 1f P s @ prime we et
“h K e P /r ., then
Lo 1(P).
Let @y, -+ avn be o complete residuc system modulo

P.Then agy | - -, awse 18 also such o system. One merhber
o . . . x s . syl
of cach list, say awe and aeyr , i3 divisible by 2. Omitéing
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these and multiplving the other members of esch liss
together, we find that

_oapn
@] - Gyp 1 = o ar - oayr (Pl
e s _ NPl
Sinee P f e - ave 1, L = a7 {P)

We conclude with a proof of ithe theorem nwn‘tionedn\“
#h the beginning of §4. ) O
Tueorew 9.16. If P ds prime if divides cxe n‘@ one
posilive rational prime p. Then NP = p'. wher T\§ S=

and n is the degree of K over R, O

By Theorem 843, £, a for some rationdl integer o, It
@ == Py - Py 18 the faclorization of o ;z{t:o Tationad primes,
then {eb = (p0) -+ (p.). Henee k"‘\‘pJ for some value
of 2. Tet p = | P ! Then P 5. i':}”'

It 77 '}'}',wﬂ 'figr\a{-"#é?’gaﬁy L'L?llzf; Saore dlistinet primes, then
we can find rational integers v and 7 seh that mp + ng =
1.So Pi L, P D1, (:011@5&1“_;_( to the fact that £ s prime,

Tinally, by Corollagn9.11, N((p)) = | Np! = p".Since
Pip NP .-'\f'((}o},)gsbfp =9, 1< <n.

MV

)
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CLASS NUALBERS AND PERMATS PROBLEM

I. Class numbers. Weo are almost ready now to Dafill
{he promise made earlier of & proof that each ideul iy Uhig)
totality of integers in K = J2(¢) which are divisible (i t~he
extended =ense) by some integer, not new%qnly ‘m e
Our proof will rest on the notion of class numbz'r

In order not 1o nterrupt the argument, \N\-‘hall antic-
ipute one theorem to he proved in the ndgs¢hapter. The
proof is hased on a new idea whose andJlf'fwn we prefer
B0 postpone for the moment. \‘

Tieorea 10.1. 1§ K 8 r‘f’ﬂ?ﬁpm%ﬁ‘ﬁ' FrOhBRand A an
wleal in K diflerent from 2‘6.’-?‘1’}“(.3‘1:(:}‘(3 s o number o #Z 0in A

R NS

suel that N
N N NGOV
Two ideals A dnd\() in K are cquiralent, written A ~ B,
il theve are {w (\T\OH -zero integers o and 8 in K such that
.: > {1 = (3)B.

The \Im:klv‘-i properties of this equivalence relation are the
fol lm\"m;,
A’Q\T Ao~dy
W U~ Bifand only if B~ 4;
7 i) if A ~Band B ~ (, then 4 ~

(vi all prineipal ideals are cquivalent; all ideals
quivalent 1o a principal ideal are principal.

The totality of ideals in K equivalent to a fixed ideal
4 2 (0) s said o constitute a class. The number of
classes (which we shall soon show to be finite) is called the
tlass-number f of K. I the class-number is 1 then all

111
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wdeals are equivalent to (1) and so are all prineipsi. From
Theorem 9.4 1L follows that o fiekd has unique faciorization
of integers into prime inlegers 1f and only i Jis cluss-
number is 1.

Turonem 102, The class-nawmber h of a fleld e fntic.

Ii the field is 7, & = 1, and there 1= nothing to prove. A
It & iz not £ 1t is enough to show that in (”Lh (s ()1‘
ideals there is an ideal B such that NB < /T4 1 for *fi{.ﬂ
(N3P =1,2,--,00r d — |,and by (_10;.()11“1"" @ “’q“JP
arc only a hmte numbher of 1d(‘al‘~ of giv e normg’ g »

Let a class be given, and let € he any ideal m} Choose
A zothal AC Is prineipal; then AC ~ {13 .BL\_J.T_L&= preceeding
theorem we ean h'nr'l e # 0 m Ao thah"Ve - < Vi)
Aid . Since 4 AR for wmt\ﬂﬂa] B, X)) =
i Na = w‘\“"ldb\‘ﬁ“'b”‘ rEARy LB < N i
NB o« *\/l}f It yemains only, 1’9 th\ that B ~ ", But
AB ~ (13, A~ {13, so thsrf ]h ~ A0 and e 1r..~ult-
follows. ‘*‘,

CoroLLany 10.3. H'»{l is an ¥eal i K. and b s the
class-naomber of K o™ {* is principal.

If A = (0, ‘1\¥ (0) and the rosult is clear. Suppose
that A4 = (03¢ ( hoose a set of ideals 4, . -, Lk, one
from el daks in K. Then Ay, oo, A4y Tall into
distinct phtwsos, for if A4, ~ 4.4, then 4, ~ 1., Hence

S~ A, A, Ay = "4 4L

Nl T‘ ~ (17 and A" ig principal.
\\,{ onotLary 104 If p is a valional prime. p 7 F. ol
A7 ~ B, then | ~ B,

We have (o) 4" = (B)B". Sinve p and h are reintively
prime we can find positive vational integers » and s 20 that
g — hs = 1. Then

(O:)’t'? — (ldlleﬂl,
a7 A 4™ — (3vBRBE™.
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But 4. ancd 22" are principal; hence so ave (o) 21" and
(3B 1L follows that 4 ~ B.

We shall now prove that any ideul in & s the tolality of
integers o i A which are divisible by a fixed integor «,
nol necessaridy in KL T mast not be supposed thal « is
wigiie, even fo within units. For example, let A (Z)\
mn £, the mitional field. Then 1 consisls of all the v
rational wfegers - that is, the tolality of inlegers, MR
divisible by 2. Bur A is also the totality of imegei"s}«jn i
divisible by +,72 (in the exiended sense of lelr{LOIl] For
A2 05 an slgebraic integer # 2 i3 eveny it mot if 2 js
odd. But there '3 unigqueness in this sensesiwhong all the «
which h:_a\'<~ H'lf_‘. desired properly thetads one which 1s
divisihle all 1he otlers; ¢ hci% onf\m unique to \\1[11111
units. Tn lh(\ speviul (é!,‘*(‘wj\’l\ir{ conguler t‘tlly’r%( mleger 2
the one which contains oll nllQLef was factors, Of eourse —2

%

serves ey well, N

Tueowear 1003, For gech¥deal A in K there is an infeger x,
nof wecessoely in ,;‘\\;{(,ﬂ thett

() 4 4s the J‘(Qg(?‘zlq ol integers & an K for which 8/x is
indegral; p
' Wy @ & wilh propeity 1) divides x.

L epe

ks i fo withiie wnils,

Tf‘l"\i = lu, ,13}, Then (o, 7 = (@) 1z principal, by
(u@d“mf W2 & = & is un infeger since it satisfies the

&dation +° — » — 0. Consider the extension £ = K{x)

\“1 K. contains K and lience all the elements of A.
“Now in A

Ar = Cex, ;If')'_,.' = (w).

By Theorem $.1 these ideals ave equal when considered

W
as ideals in any linite extension of K. Then (e, 37 =
) = (" m E. In view of the unique [actorization



i g,

/7

114 CLASS NUMBERS ANTY FERMAT'S PRGN

theoremy for ideals In &, {e, ) = (&), still in £, Heneo
every clement of 4 is divisiizle by «. Moreaver

{10.1] & = A -+ p3,

where h and » are in £, _
Conversely we must show that any elemant 5 1 54
which i3 divisible by « 18 in 4. Since v and « are bmh\
m E, and | v il lollows that v i in (k) = (o, 3y Iwdibre
(e, B) 48 considered as an ieal in E. Weo wish L¥how
that v iz in (a, 8) when (a, 8) i3 considercdgddlan idead
in K—this is not vet ¢lear. But v = Agobere A is an
integer in K. Let « be of degree b over A Chen B = Aix),
(E/K) = k. Let o, 1, -+, 1 denof@ilie conjugaies of
g and Ay, - Ai the conjugatos Qf'Z\\ for E. v s in K 5o

that all 6 %I%ﬂga%%bsﬁl;wﬁ'ss%ﬁm Hence

R Y
= P\‘i’{-‘:; 9 = 1’ P 1[{'. v‘s;—:‘_,s = ()\l P h;’;)ii{]_ Ce HI.I:.\.J,
The product § = X; - -4 Is symmetric in the A, =0 it
i3 an integer in K. $fte « salisfies 2" — o = {, so docs
each of «y, -+, x_x:ih‘hon
N\

A . " " _—
K5 =@ (ko) = o A
lience, af Weals in K,
x:\"'
7\ bk Rt
N b= = (") = (&4,
p ‘. & [
A ) = ®4As, AT ()
by the fundamental theorem of ideal theory. By another

application of this theorem it follows that 4 |+, so thal
v is in A. This proves part (i) of 1he theorem, and (i)
follows from (10,1).

To prove the uniquencss ol « suppose that o and
xz both have properties (1) and (i), Then & ; xe , x| £ 50
that & = oy, where o 18 a unitf.
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2, The Fermat Conjecture. The rcader iy probably
familtar with the famous unselved problem: for what
positive infegral values of % does the equation

(102 oyt ="

have a solution in rational integers? Tor n = 2 there are
solutions Lor example, 37 4+ 4% = 5% Tt is an easy mabter™)
to prove that Lhere can be no solution for n = 4; the pl(mf K
depends oniy on the simplest properties of integers\ (nd
aun be found in almost any book on E'lemf‘ntai'wnumh(’
theory. 1 wus ssserted by Fermat in 1637 thad 0 > 2
there are never any solutions (Fermat’s “Last T heorem),
bl a prooi has never heen found <mt] she assertion at
present hus only the status of a um,gs{,tule A large part
of the theary of 1wehuw\\,_ﬂgmm,% aga}}ggﬁr@_‘q%d in an
effore to prove it. )

Belore  disenseing  the (m‘swcfure further we shall
simplily il statement sonmu‘hal Hinee there is no solution
fora = [ 1there can be no ¥olution when n = 4m, for we can
wrike the equation [lk 2 ne (™Y + @ = ™ Lvery
integer 5 > 4, ?'{'> Y. can be written in the form n = pr,
where p iz an orn\pl ime; henee it is enough to show that
{10.2) 11«13 nggeliitions w hen 7 is an odd prime, For we can
write (1 )NE (3707 = 2V, Tinally, we let n = p and
”-’plﬁ-i-‘-ﬁi\é.’ v —z; sinee pis odd (10.2) becomes

(1'[3\-'3\\&“' 2yt =0

.\Tié'I'mat‘s conjeeiure then amounts to thist for no odd
“Prime p does (160.8) have a solution in rationa) integers.
Itis convenient (o ¢lassify the primes p as follows. Let h
he the clags-number of K {¢), where fisa prlmlhve 7 ® root
of unity. If ¢ A R, p s regular; otherwise p is irregular.
Kummer proved that if p is regular, then (10.3) has no
solution in vational integers. Unfortunately there are an
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infinite number of irregular primes and for them the statue
ol (10.3) 13 unsetlled to this dayv. We shall lusiraie the
connection of Fermal's conjecture with algebraic namber
theory by proving a weakened wversion of Rummer's
theorem. The veader who wishes Lo know more about tiis
aibjeet should consult volume TTT of Landans Verlesungen
or Vandiver’s expozitory paper listed in the b|‘n]mu wphy.{

A gevies of lemmas will be proved first, ¢ will hav rofh}
sane meaning as usual a0 primitive p'h ront of ‘mn‘r\
p &= 2K = R{{}is of degree p — 1 over AL '1.4.‘} S Hd o
real danger of confusion, ideals will be wriggelIh squere
brackefs vather than parentheses. As cnrlichNVivill denote
1 — [. L denotes the 1deal 1], N

Livya 106, L7770 = [p] and NT, =\p
A wevpawyskant Bhargoryin  O\Y

-

p=(--00 =@V

g0 that ;}’;’“
= |1 — 1 _ el .
DR R e

Obviously (1 g{zv(l — O for § o> 0. Now choose !
g0 that 71 = l ;&wi 1) Then

1 --.(\a: T = (=0 - ¢ 4 -0,

s (| w{\ (1 — & Tenee 1 — ¢and § — ¢ are wss-
(mlx\.\\’m that [ =8 —¢ ]_ Thus
’:::, T — I P il

{,\‘; ip] =11 ¢l = L7,

‘-.mr(' (KR = p — 1, Nlpl — ' Ap = 3" " then
(VL™ = p"L NE = pl By Covollary 915, £ &
prime leal.

Leangs 1007, The naombur 4 4s nol in K, ner is the numdber

Sy

e il g ds o prive different from p and greater thon 2

\.
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Suppose 4 12 in K, Sinee it iz a unit {1 4+ ¢ = [1 — 4]
‘Then
=L+l —d =1+
Sinee 2 = p thw contradicts Corollary 9.7,
Il &7 is in K then, by the same argument nsed to. >
prove Lemma 1006, ¢ \\ e
. g Frifaqa—1 s
[gf = [L— ¢ """, N\
fince ¢ > 2 [¢} is ramified, again in c-ontraéi(_{tion to
Corollary 9.7, ":‘ )
Aroot of unily @ ix a number such that @0\ I for some
pogitive integer wm. Obviously « is of) ‘%\sf'c form &
where { Is & rational integer, N\

Lieaaiy 108, The rm-?ywwwfdbpj,:ﬁwlihiz‘q,l'mimgilum =+,
0<s < p. Ny

%1113130“9 R ™ iﬂ“&ﬁ’e can assume that m > 0,
(m. ) = 1. The lemma maf'-.{'i\ that m | 2p. Il m £ 2p then
one of :ho ulhmmg u{\&l he Lrue:

' n\w g m, or P,
where ¢ s un Qdd prime different from p.
Since (m, Q‘:}g | we can lind » so that & = 1 {mod m),
tr =1 Lukul. Then

N\~ - Saiielm Ewilis 1imd eﬂn‘jm

N a = T e

iniR
N4 then (27 = i jg in K, contradicting Lemma
10 T 7 m then @7 jg in K, also contradicting that
lemmg,
U p [ then r = 79" is jn K. We show that this is
Uﬂpumhl 7 sutisfies the equation #*° — 1 = 0, but not
t° ~ 1 = 0. Hence 7 is & root of
|

_ w1 JLip—2) s 1
o =P 4 e
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By Theorem 3.9, 7 iz of degree p{ip — 1) > p — T over K,
henee (Corollary 5.8) it eannot belong to K which s of
degree p — 1 over R,

Lumas 10.9. For each inleger o s K there 3 o ralional

snieger a such thal .
g 2wl L .:t\..\.
o = g (mod L) ~
o - . . -« \/
Since ¥L = p, there are p incongruent residuc r.l‘;bam
module L and, as we saw earlier, 0, 1, .p - lerm a
' 4
complete residue gvstom modulo L. Hmw Top.}\luﬁ able

rational integer b, @« = b (L). Wow \4

_ ]IJ_ II(Q—‘")\f)\\'

i

Qince » Z- dea‘flLb“l‘ﬁi‘j”‘ﬁlH' thi} of the factors

S
2

a— b= cxw*;"b = 0 {L).
Henee o — B" =0 (L"j).
Leyya 1030 If all@he coefficients of o monde polyromial
are rational miegp\’imd all the roots are of absolute value 1
there these roolsre wools of wnify.

Let the 1;)031% be @, -+, w;. By the theorem on
symmetriechutfetions the polynomial

N
L N
*d
2

N
8

00 ; t !
\s"\;p:(if) = (& — @i}z — ws) - {1 — oyl
is, a\monic polynonual with rational integral cocflicients,
~{niv ‘cach fixed rational miegf\l 2> 0. Jet
W 4

\; 1 : -

, piz) = 2"+ a2 A e ae, =12,
denote these polynomiuls, Tach a;; 15 an clementury
symmetric function m the voots wr, -, wy ) sinee these
roots are of absolute value 1

fay | < (’;)
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Now (i:) iz independent of 7, go there can be only a finite

number of different polynomials pix). So w; must be the

game Tor Lwo distinet values of 1, say L and L, where
2 H o O—la :

L> L. Then o = w®, o ¢ = 1, 4o that w; Is a root of

unity. A
3 O\
Leststa 1011, Lef e be a wndt in R{C). Then e = {*r, wheres ™
¢ 18 @ positiee rational tnleger and v 18 a real number 2N ¢
Sinee 1, &, ---, {77 is an integral basis, ,E":-% e},
where (¢} i+ a polynomial in { with ratigngl‘mt-egral
woefficlents. For s = 1, -+, p — | the nuber & = r({*)
i eonjugate 1o e. Hinee Ne = & -+ a7 =1, & |1, 50
thut each . 15 o unit, Morcover, S

L a— I"fSt.JJ_*Y\"\i_W???%L}h:br??&xz}?rgln

where the bhur denotes thg:‘;({bmplex—(‘onjug&lie- Hence
T N 3{] There are p — 1 of the e ;
muléiplying them in s we get Ne = Heeps > 0, 80
that ¥e = 1. o)

The nmbers é\\e,,_'} s=1,.-,p— 1, areunits of ab-
solute value 108y the usualar gument on svmmetric fune-
tions the le‘&ﬁfﬁnml

,:\"i'f—! e P—1l
ANY T e — @)= [Tlpsz — &)
'\\“' =1 €y s =1

Jos Taiional integral eocfficients. We conclude from Lemma
™\ . X T - . E ;" . r
:”,10.1{} that e, e, s 2 voot of unity. [n particular i wa let
"8 =1, we find that ¢’e, ; 1% a root of unity. By Lemms

108 f_.-'gﬁ__:_ = i§ = ¢ TP Ripee P inodd one of tord +p

Beven, so that - ¢ = —=¢™, where ¢ is a positive rational

. €h..1
tbegar,

Modulo 7. the numbers 0, 1, - -- ,p — 1forma complete
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residue system. Hence for some one of them, »,

TR,

But L = [A], so that » = : E\ ~ is an integer i K. Tts

f

complex-conjugate g is also an integer in A0 fov huth

satisfy the same minimal polynomial. Then Q
"N
- g_-_f-fé S Shﬂe:h 1 = ¥ o \ ™~
B = _— = e — N
A A AN 3
K7,
- . = : . . W o .
is an integer. Bt A = 1 — 7 s an assw.‘mk ol AolEee
N
I e, N,
{be proof of Temmu 10.6). Henee 208 i3 also an
. A

Al 4
W

inieger. Then

Cepn = v o= %)
WWW . dblaullbralyor jn e

by (10.4). This shows that —=== " (L).
‘&p—'ﬁ
We can now decide forfrhich choice of sign owr previous

COLLE lu-ﬂnn - 4:{5(&. coreect. Tf the — sign holds then

- = §’2 (L‘i\\:-,o that L, 2¢, ML 277 which con-
tmdlcts Lergtgn 10.6. This means that e = ¢ oo s
e = ep._£5 “Since the right- and left-hand sides of this
equm’rlgn\are complex-conjugates and equal, they must be
T ’N’lt—’ lemmg, is cstablished.

We arc now in a position to prove the following simplified

D ‘101m of Kummer’s theorem:

O
) 4
.

Turorem 10,12, 7f p is a regulor odd prime, then
[ 105) :}:?7 + _yp + 2?1 o {}
huas no solution in rafional fnlegers for which

pla pAdy. pie

\
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We shall assume that the equation has a solution for
which p does nol divide any of #, x, ¥, 2z and arrive at a
contradiction. If » and y have a common factor it is
shared by 2z, and we can remove it by division. This
instifies the ¢ 1~«'~umptlon thal z, », and 2z have no common
fuetor. From {10.3) we obldin

¢\
2=l N\
(10.45) IT 2+ ") = = &,
=i N
and {hen LV
=1 \%
(10.7) IT e+ " = 70
m=0 AN
\ A
(Note the change in notation, ~1g_>;mh~111;ﬂ the passage from
numbers to ideals.) W dbr aulibrar y.org.in

Each twy of the ideals on ¢ ‘ho loft of (10.7) are relatively
prime, To prove rlm Huppoﬁt‘ I is a prime factor of both
[ + 'yl and [» y]U<A<Z<p—11henP
eontains hoth 4—\5 y and r» + £y, and hence thejr
tiferonee 1t (16 . Since | — ¢ ¥ is an associate of
IT—¢=n an(h‘” 13 & unit, P contuing the number yi.
Henee P (OJ.’}.’L.I:‘TT‘I‘- either  or A, I’ |  or P | X. In addition,
b" {10 r‘ P & 50 P contains 2 and therefore P eontains
A M There ave nm\ ‘r\m possibilities, (i) If P

€o "nﬁ a;ii umtamw & — w0 P, Py, conlrary

18he fact that @ and y are relatively pumf‘ (i) L P A
\1hml P L.But I is prime, so that P = L. Then I contains

4L, NI Nz p "7, p 2, contrary to the hypothesis
'thﬂf- v )f z. This proves the assertion made at the beginning
of the paragraph,

We retum to (10.7). Since the factors on the left-hand
side ave refativ elv prime, it follows from the fundamental
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theorem of ideal theory thal each of them must be the
P power of an ideal. In particular [x + fy] = V7 Then
A" is principal, A" ~ (1) and, by Corollary 10.4, 1 ~ (1},
Hence A is itself a pringipal idesl {(8), and [v -+ [y| =
f5]” = [8*]. This shows thet & + fy = €7, where ¢ = a wnit.

This step we have just taken is the decisive one. Bug
could we not have drawn the same conclusion directly/
from (10.6) without the excursion into ideal theory >(The
answer is that without ideal theory we could hagedpiade
the dircet step only in the easce when the hoLd W) has
class numboer 1—that s, when factouzatm“i\m Tniegers
into primes is unique. Unfortunately there\ve cyvelotomic
ficlds of ¢lags number greater than 1. \\“

Sinee x + ¢y = & we can nwdke Lemma 10011 1o
conclude that » + gy = 'ré” whm*e ris a real number.
“According ¥ ﬁbﬁ@ﬁ]‘ﬁbﬁﬂ'g & Sé"ﬂ a(I") for some rational
ml,egm a. Henee ¢ + g —~§* v (L), But (Lermma 10.6)
[p] L, and therefore r*4~ ty = Pra Guod [p]). Sinco
FPisaunil (x4 Al = ra. Also ra s a veal, so that by
taking complex-conjigates we find that $(r + T = o
Combining the {{&t‘i‘im songruenees vields

(10.8) wp 7 “ys T — ™ = 0 (od

We dl(k“"“* for a moment to show that 1 + [ is 4 unit,
"‘\lLL(’e\“\‘ .

X T +1=1(p— e — ¢ } ce ”'f”-:_\:“

m‘

"\\w find, on letting w = —1, that {I 4+ ¢} 1, establishing
) “the assertion.

Observe next that ¢ 2 0 (mod p). For atherwise ° = 1

and (10.8) becomes 4 — 7 = 0, y(1 + M1 — § =2 03

then bevauqe 1+ i ‘Lumt =) =0, 0r P AL Bince

bl = N7 p > 2N TN ALY NA | Ny, p iyt ' conirvary

tothe hypothesis p / y. 8imilarly ¢ £ 1 (mmed p). For other-
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. . 1 - .. .
wise (10.8) becomes 2(¢7" — ¢ = 0, and a similar argument

applies,
f10.8} can be then written
Q0.8 ap = F g T~ —

where « is an integer in K and none of the four cxponents
R o s st P—1 ¢
of {1z divisible by p. The numbers {, {7, -+, {7 form agi\ ¢
. o BRSSP 4 ¥
integral basis for K, and the numbers ¢7, 77, ¢, &8
N ; T \v/
veeur among them, Now \

ol ity —J 1=y Rt ‘_U i ‘L’"‘}‘?’"
a = p + f‘ » 4 pf ‘\V
T o two m ihe “\p(‘llt‘nt‘-, are congroent modula # Lhen
powoand piy, for @ is an inleger andl¥é representation
in terms of the integral basis sy ﬁ}ﬁilue and involves
integral coefficients only. Since Mact p £z, p 4y by
Lyputhesis, two of the“(‘y\ﬂmmn? Ittt a)(' eongruent
mmhﬂop Rineeg £ 0, g #J the only remaining possibility
s 2g = 1 (meod pl. RN
Because 2 = 1 (;Qud gy, and & = 1, (10.9) can be

wrilien
ap(” ’s\az i yr — ay" — g
LO-= fx — gill — &Yy = (x — )\
Tlenee \’

N/

Noofl¥ = Ve — V2, Nap™ = (= pp

W(%ﬁﬁ( dude that p | (x -~ 3} that is, & =2 y (mod p)

X\ :]\f we go back to the very heginning and write {10.5) as
2B =
AN

l

)" T+ = o

am=l|
o ximilar argument shows that & = 2 (mod p). Ilence
0= " gy 4" 22?2 2" = %" (wod ph

Then p | 32%, buk p £ 2. [lence p = 3.
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The only possible regular prime for which (10.5 has a
golution is p = 3, and we shall rule oul this case by
showing that «° -+ 4 4 ¢ = 0 cannot have a solution
in rational integers f 3 .7 &, 3 { y, 3 4 2 Sinee — 1, 0,
1 forms a complete residue system modalo 3 and 3 4 &,
2 7t 41 (mod 3). Hence

£

w = 3k £ },2° = 27" + 27k + 9 £ 1, ,,5\\>}

502 = 1 (mod9). Similarly o’ = £ 1,2 = == 1 { { a&ﬁ),
80 that e
4 (/
0=zo" 4y 42" = ] &1 \i\,\, mod 9).
Obviously this can not be frue for ang,\\shmw of the &=
signy. ‘Theorem 10.12 is proved. ,,,\

L
www.dbraulibrary .org, dm [ \J
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MINKOWSKES LEMMA AND THE THEORY OF
UNTTS

. The Minkowski lemma. We shall now introduce thg;,M
fdmnma “geometric” lemma of Minkowski which h,s]-,'%
inipurtant applieations in number theury. In paltleul‘u 1t
will vield a simple proof of Theorem 10,1, which a.r*p}éﬁem
stands unproved. In addition it will Pndble us I({v'-"rabhsh
the basie theorem concerning the structupetol the units
in an algebraie number field. SO

Treores 11.1. Let [a,,) be o sof uj"g(a{?%ea.f tembers, where
vy = 1,2 -, n > 1, and kel thal the deferminant
A = ey, | 48 rw! Zero. I%‘ﬁ"n’ dfm’a?{’?"h! BRI ) by

‘T‘]'J by, - ”n) - Z a‘i’@"uﬁf: = 1} ey

Let Iy, o B ben p({szr‘ae'ﬂ nunthers whose product 45 nol
legs thun | Al i’huz{tf}’w exist ruttonal fulegers x4, -+, Tw
nol all zero Tor u hv\?%z
(1.1 (’I‘lr ”}”Cﬂ)g<‘ﬁ""ﬂ: p=1-,n-1
i} R
x.é.f;(vrl e Cn) lﬂ .

Tofeé what this theorem means geometrically suppose
for&implicity that » = 2 and that | A | = 1. &y and s are
1hen any two posilive numbers such that &6 > 1. Let

\Jn and . represent the coordinates of a point (w1, ue)
in the plane. Any equation of the form | aw + bue | = ¢
represents a pair of parallel lines. Hence the equations

| autis + Gria | =

| Gaisr + totie | = B
125
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represent two pairs of parallel lines. The four lines so
represented are not purallel since & 5= 0. It follows that
these four lineg bound a parallelogram. Tt is not Jdifficult
te show that the ares of thiz parallelogram is 4.0
Sinee hfa o> 1 the ares is at least 4. The theorem then
suys that o parallelogram with center at the origin and
area at least 4 has the property that in it or on its heuundary A
there iz o point {1, %), different [rom (0, 0) und thllelei\t N
from a vertex, whose coordinates are both rational mtesﬁd 4.
The number 4 cannot be decrmsed as the square, Lrolmdml
by the four lnes w, = £k, 7 = 1 shows."&lme =
conesponding  interpretation of the gemmal theorem
for n dimensions, when “'p:-u-nllelogram 05 repliaced by
“parallelotope™ and the number 4 by 2

We proeced to a proof of the Lheolem A poind (ip, -y
) in e Rve bR bk‘i‘iﬁ@‘&'ﬁ‘ose coordinates are all
rational integers, but not all zege. rote this last vestriction )
we ghall call a lattice point, fhé theorem states that there
i af least one lattice points itisfying the eonditions (11.1)

Suppose there is na futh point. Then each laftice point
satistles at least ongﬁf the inequalities

ILp(ﬂ?i:';“;,xn)';Zf'fp, p=12 -, 851
| La(@N& - ) | > by

Conqdel \11 those latiice points (if any exist) for which

O VLalas oo, #a} L > B,

. "but for which
Py, o Eu) | < By p=12 - -,n—L
Tor o sufficiently small positive ¢ they salisfy the
ineguality

PP TR - S
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It follows that ench lattice point satisfies at least one of the

inequalities
; L.-'-"rézll v In) | Z JII";J ’ P = 15 T 1
(e ’
|. L.'a(‘\‘tll Y -Tn) | 2 ’I“u + €
From this we ghall derive a contradiction. A

N

Lethy = oy, p 5% 0y and by = b 4 e Now l“onsidgffhp“
reglon interior to the parallelotope Py defined by N},‘ v

r

L : I
(113 L iy, e Ua) | < ?ﬁ R

N,

%)

%" , H.

.\’

Let g, -, g be any lutiice point. \E@can imagine Py
han%htod «0 that (0, ---, 0} beeonie® (g, -+, ) and
% beeomes the new hg,uuz Pg(g* NV, gn) dehned by

s W

; o
Tl — g,y e M\g(»}?tkbfagibrary,o%‘gﬁnlz tery T

By varving (¢, - @M we obtain in thiz fasbion an

mfinite aumber otmw\sh Polgy, -5 gs)
congruent to theduginal one.

all geometrically

No two of, thése parallelotopes can have a point in

common. Fenif both

N p
R L. |.;U
Lol gy - - | <5
pALS

\"4
I.-'
r , ‘) e
g\ S Ly =g, — g < R

I
are true, where (g, -, gu) # (r . -7

Lagy — g1, e — gn) s < ips

po=1, 0,

p=toe,n

H g:‘): then
p = ,1’ PR ,?&,

contradicting the fact that one of the inequalities (11.2)

holds for each lattice point.
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Now let L be a positive integer, and consider the
hypereube |} < L, ¢ = 1, -+, 5 The swm of the
volumes of all Pulgr, -+, g.) which lie in thiz cube 13
lezs than the volume (253" of the cube. Tet ¢ be the upper
hound of the absolute values of the coordinates of all

pointa in . Then amy Polgr, -+, gn) belongs tn the
eube e, | < L+ eprovided that | g, | < T,q = 1, LEN
There are {20 4+ 11" — 1 such Polgr, -, ¢n) (‘\('ll'lwl\“{\ Wit
Py, since each g, satisfies —L < g, S L. Nong «)l “the
Pulgr, -+, go) overlap. Henee the cube |, ~§ + c
containg parallelotopes of total volume &‘ i
where J is the volume of one of them. Elienttal volume
of this eube is (2L 4+ 2¢)7. Hence AN

< (2L + ‘?c)“\‘

= (2L —1— I}’*

Now lel fyww. ddariuln@ﬂla;m@miﬂ < 1; hence the volume
of Py iz at most 1. AN
We shall now compu‘te. “the volume of Py by another
method. According Q?\ 11.3) the volume of Py is given by
e ndold mtegu\k

O = f dig + - du, .
Sl lel bpl2

&
Now 17;1,’&(’(3 the change of variable y, = Lp{u, <+, ua.l
lhx\ihcobmn of the transformalion 1= just A, so that

L3

O S
J = _— figy ey, = A TR
\ .3 j_;ﬂz&, o by | 4

r

But by oo fo =Ly oo Bl € > Ly oo- ka2 A
acceording to the hypothesis of the theorem. Hence ./ > 1.
Thiz contradicts the preceding conelusion that J < 1
The assumption that no lailice point satisfies (11.1) muost
be retracted, and the theoremn is established.

It 1 mnportant to see whal happens fo the theorew
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when the @,, are permitted fo be complex nwnbers.
Weo shull show that with appropriate ehanges the theorem
remalns triae even in this ease,

Let L, p — I, -+, n be the forms defined ag before by
Z;aanq Ug p=1-- >1?';':\'
= \

N
but now permitting the gy, to be complex. Number ﬁle
Ly sotha the frst vy, 0 < ry < 5, ave real ® the rem&fhmg
oles imaginaly. Ib iz assumed that the mmgqmry OneS
are even in numnber, say Y, and that withggel one which
appears on the lisit as Ly, with 7 < p %) its complex-
conjugate L, also appears on the h:".\"f’ L., . The list
now reads

“0

El___v__ P ' \":rn'—l v wwlﬁdtj}‘@uliiﬁgm‘y*avg in > L”1-°’° i
real Jmagmm 5 complex-conjugates

Obviousty n = 5| 4+ 2y N lwim"e it will be supposed that
Ry ooy ke, ave posifite numbers for w hieh ks -+ ke =
PA, and muleuvc»\r.t‘hat they have the property ke =
Lr; ibrg g & = I_,\ -\ o, Thus the &, corresponding 10 a pair
of complex- ccamuw ite forms are the same.
In orde™Ny applv our previous work we define a new

sef of f&bﬁlb T, as foliows: let

\~ _/Lg,f p=1-,n
:..\’:':' i'TJ_p _ﬁr_ I‘J? - j—‘p_i_j__-‘zﬂ‘*'?"’
\; N/ i ,\//53 \//2 ;
L;J = "l p=nN _%_ 13 s, + 2
‘L}, — Ly Ly = Ly
l 2 \/? i’
| p=rF ot e T 2

.

* This means that none of the 1. which appear are imaginary.
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(Tf ry = O the list is understood 1o begin with the second
group.) The set of forms L; is real, and itz determinant
has the same absclute value | A as the original sel of
forms IL.,(why?) This enables us fo apply Theorem 11.1
to the L; Before doing so let us choose any inte;:,el a,
1 < g < 2, and move L, to the end of the list of L, . IL

follows that 4 lattice-point {(xy, -+, x,) oxists such H{}E\
PLo{, e | < hp, po=d, e, ", ;7{(:.
gy T <t &
; T‘a(a‘l . 0 /En) I < ?t.u . l"\'"

M order to apph these inequalities to ]&} let ne find
T, in terms of L, . Clearly ,\\;
T, =1, \“ po=1, -, 71,

3
AN

I, zw\/T\?_,ilBI;au_libl Y F;J%; m s | |
“F?} =n+31, T

X
»
/

Fopivy = Ep ,:‘:: i
Hence m’\\ |
I el = Lol p =0,
RS, po=oa L1 e, b s

i..\’{,
o \ 0 we ignore the first, of these two chspr% )
..:\L\“m\ lel @ be any integer, 1 < g < r; + 7o . It follows
"\flom the preceding formulas and the mequalltleb {11.4)
} that_

/
:L@("vl) Jq’ﬂ)'<kﬁ P = j-: "'Jrl'{_?‘:’p#a"
;La(fsl; :xﬂ):: E J?l"a-

Sinee | Lyt = [ Lypry o = 71 + 1
proved

, 1 -F 7z we have

st
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ConmorLary 1.2, There cvists a laltice point such that
| Lp(er, -, ) [ € ke, p=1,0

M f;,"ffm.'m‘, the wequality. can be replaced by a strict one
eirept Tor one real form L., or two complex-eonjugate
formg L,, s Fiary , chosen on advance,

One ])(11 ticular case iz of special interest. Suppose.V

n =2 r ={,rn =1 that is, both forms are 1m¢tg,1n ary,
In 111‘1‘5 case b = Iy and {w‘«,

_ _ 1 ’

| rll I = | L"’ | - ,\/2 l i 'Ll | _'_ | L |"‘i\¢‘

s0 that by (11.4) we can conclude th»z{“ both | Ly | and
;Lo | are less than % . This concluqklg cannet be drawn
dm‘c tl¥ from the corollary. N

’.

WL dbra‘uhbrary org.in
2. Applications. We are now in a positton Lo prove

'lhpowm [U 1. Tet on, - -ea e, be a hasis for the ideal A
andlet a”, j = 1, - nbe the conjugates of «; . Consider
the forms Et—x aiwlN = 1, , n. Their determinant

Tafey, o0 an]},liz\\— Nd- .d w’ #= 0., We can app]y

Carollavy 11, 9\\&}1 all the &, equal to [NA- d]"}"™
This viclds @Yattice point (z, ---, x.) such that if
= Z:;I\a:; x;, then

> < NALGIT =1

&/ | &
.
\Ie%o\ er by the kecond part of the corollary and the
émarks following it at least one of the incqualities can be
"\:1(\1)1400(1 by a strict one.. Hence

} : | N | = ey o0 g < Nd-id |1.-'2.

Another important consequence of the Minkowski
theory is

TuporEM 11.3. The discriminant d of on algebraic
wicither field diffevent from I has lhe property  d > 1



.’\:

e

Tatier set 5o that 6,4, and frprype, t = 1, - -
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To prove this let A4 he the ideal (1). Aceording to
Theorem 1001 there is an integer a = O in {1} such that
P Nal < N((1))- d" = 1d|" Sineea =0, ¥ > 1.
Hence | d | > 1.

It should be obszerved that the conclusion of Theorem
11.3 is fulse for the fleld R, for in this ease 4 = [ Notes
algo that in this ease the Minkowski lemma s not a'\-“aﬂ-a:bl'é}“.\
since it requires that o > 1, « N

In the following seetions the theory will he geed 1o
study the unils in a field. The proof of the fl{ld:‘:.mmta.l
theorem i= in the main that outlined by G his rreact
{zee the bibliography). The reader will figed it useful to
review the elementury material on wn@phen in Chapler
VIT. -

X
S

3. The Wﬁﬁfﬁﬁﬁﬂiﬁs%&ﬁ{ﬁe}wem on umits. \s we
saw earlier, all the units in gheweal quadratic feld R(v/2)
are of the form (! + a¥8)° k = 0, +1, -~ . Ttis our
purpose to obtain a,genei‘alization of 1hig theorem for
other algebraic nurpher fields.

Lt K = R (9}\1§e of degree » over R and let 8,, -+, b
be the conjugates of 8. The §; all satisfy the same minimal
polynomial @EE). Since the coefficients of ple) are veal,
any Imugiary root #; has paived with it a complex-
conjugate root 8;. Tet 7, be the number of real roots
anghdr the number of imaginary roots, where n = o + 22 .
Nurber the roots so that 8 , ey B, are real and A4,
Y., 8, are imaginary.* Arrange the numbering of the
, 1, are
complex-conjugates, Finally, let » = r{ 4 1, — 1.

If » = 0 the structure of the units in K is easily settled.
Forthenr + rn = I,s0 7 = Oorl; sincen = 1 + T

* Observe that in order to do thiz we abandon our previous
convention that 8, = 4.
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#=t w2 Hn=I1thefieldis Z;Hn =2, r, = 1and the
field i~ imaginary quadratie. The units in these cases
have wiready hecn deseribed in Chapter VIIL Tn what
follows we ghall therefore assume that + 2 L.

Observe thal any root of unity p in K is a unit, for if
poo= 1, N = 1,80 N(p) = £1. The number of roops
of unity in K is finite, for the degree of any one of fhieryt
must divide # and there are only o finite number of Tebts
of uniry of cach degree. “.‘”"‘:

Ile., ---, e are units in K, so are all 1'11;1‘&1’}9.&*.1-5 of the
form e = pe’ --- &', where the q; areydtdnal integers
and p 1= n vook of unity, This {ollows fl'tl)l{l“lhe faet that the
procduct of units 18 a unil. The ¢ uiﬁ}-s €, " . €& are
mndependend if there 13 no 1'elation~@’f:}he form
{11.5) E(fxluww.ff.%i:a’éﬁi'brary,org,j11
with the a. rational integ(q‘% unless all the e, vanish. 1f
there Is such a relation alid £ > 1, cach ¢ is said o depend
on the others. Obsepcovthut if &, -+ -, € are independent
then no relation ,Qf“g}ie form

\\ 3 by
€ 't € = p

can Loldsg@th the b; rational numbers. I'or by raising eaclh
side tQ"i hfficiently high power we can bring it into the
Torme .50,

The principal theorem on the structure of the units of

N\

28

oK 35 the following.

£\®

%

Toeorem 11.4. If » > 1, then there exist r independent
UNHS £y, -, & in K such thal every unil 1 can be expressed
uniquely tn the form

= pE?I Tt S:rr
where the a; are rational sntegers and p is @ root of wnity v K.
"The proof will proceed in three parts. First we prove
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the existence of r independent units ¢, -+, e . Secondly
we prove that there exist » independent uynits &, --- | &
such that any unit which depends on e, -+ -, ¢ can be
expressed uniquely in the form preseribed by the theerem,
Finally we prove that each » 4+ 1 units in K are dependent,
so thut g units depend on e, -+, & . )
Euch of these three steps will be discussed in . sepadide
geclion., \

4, The existence of r independent units. Aé'geordiug to
the proof of Theorem 11.3 there is an int¢dfs™ = 01w A
such that ' Nh, < 1d |, Tet us considennll A with ihis
mroperty. Thach determines an jdeal (X)6f norm ozl to
') . But there arc at most a figité number of ideals of
given norm, and henee only & “ffite number of ideals
), - W ydkpeglipreny.o s%han | d ™. It follows that
any A for which | ’\“M < L'd| is associated with one of
the numbers A, + -, A .Let M7 denoto the conjugates
of A;, and I the sma.llem’r of the numbers | \S? 5 =1, ---,
s,4 =1, -« s P g \

Tetay, -- a,, be an integral basis for K. Wo are going
to apply Cogoljary 11.2 to the forms

:‘\:“3 / Zla_(ﬂ %y, . = 1} N3
N4 i

T%ﬁéterminant iz 1d [ The reader is reminded of the
»cpm'entmn established in § 3 conecerning the munbering
) of conjugates. It follows that the fixst r; of the l)leCE‘dm“
" forms are real, the remaining ones falling into pairs of
complex-vonjugates.* Let ¢ be a rational integer 1 <o
<+ If @ corresponds o a veal form let &y = [ except
*H any of the remaining forms were real, twoe would be the

same, 80 that Aler -+ o] = 0, coniradicting the fact thud
LSRR 1 2% iz g basis.
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for ¢ = a, and if @ eorresponds Lo an Imaginary form
fpi ;= lexcept fori = a, ¢ = a <+ ». Choose the re-

muining %y so that the product of all the &, is |d "%,
and zo that k; = ke, In the second of the two cases.
According to Corollary 11.2 we can find rational integers®

xi, -+, ¢, not all zero =o that O\
- & N
) i - -
. N
!Z “:Et) r; < {, s ™
L=l i N

for «1l 7 except 1 = @ in the first case, and except ¢ = @
i = a + #in the gecond. Let g, denote théQnteger >
a; . Then N

B : T . :t\ 3112
N | = 1 P | < M e = [

According to the preceding pafagfaph u. is associated
with one of the num%@)%ljs:qli&g‘aﬂygﬁg.;m\'here €, 18 &
unit. Now et | < 1,2 =},. S 4wy, 7 # a. Henee
S\ S {
& Mae <lg=1
foré = 1, -+ ,QM}. o, i # @ Now [ Nef=fe |-
Pel™ 1 = 1. ,L\E&eover, according to the numbering of
the coujug\atﬁes’ each of the factors except «°, and its
{':.:_}1'11])1e3<c:c;11_1'ugatc if it oseurs, is less than 1 in absolute
valugeJdénce | £ | > 1.
h@tf 1< a <7 -+ r,acan take on the 7 + 1 values
~i:;;\§2, <o+, # -+ 1. We have therefore found r 4 1 units
:"\‘fe’l, -~ &1 such that fore = 1, --- ,r+1

N\od .
(11.6) |7 < 1,5 &> L

3
It will now be shown that &, :++, & are independent.
Fov suppose that €' -+ - € = 1. Since the a; are rational
Integers

mlog [ |+ - Falog e’ =0, i=1,- 7
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We shall show that all the a; must be zero. If they are
not then the determinant | Z;; | vanishes, 7;; = log | /¥ |,
t=1, - ,rj= 1, -‘-,?".Let-ei- =1,i{=1, -, rm
&= 2,8 = + I, " Then the delerminant | o,
alvo vanishes, since we ll‘we only multiplied cach viw m' :
constant, ‘The cquations A\ ¢

2 wiely = 0, J= 1\."“”} i
=1 ¢

therefore bave a non-trivial solution =, - - - 1,,\ (hm},u
that r; which has ihe Jargest absolute . h}e WO LY
suppose it to be . The first of the equa&ons is

—xly = ae by + - i }‘er I,
€2, R 1

and so 'S

AN

SRR Jﬁbraﬁlnb%i-)ff@m{‘zﬂ il e b [
By (1163, 0y > 0,1y < 0, zm— 2 -, . Hence

el < —@@I — e — gy,
g0 that £\

(11.7) elko\i‘{:}}za’l + oo ool < 0.
From this we( b.a,n obtain a confradiction.
Since A \’
D W= g e,
.<§”' log | ¢ -+ Iog (™1 =0,
Ac’cmdmg, to the numbering of the conjugates | & | =

\ 1 FFm2 k> py . Tence

) 2

4

147 )
eslog |l [ = 0,

But this sum is

' s
ey el o+ -0 4 el e, Tog e L
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By (11437 the lagt term 1% negative, so the sum of the first »
Lepms 1= peilive, contrary o {11.7). 8o our assumption

that e, - -, & are deperident was erroneous.
We h. o proved incidenially that the determinant
llog Ci=1,.-,74§=1,--,7, does not vanish.

5. The second part of the proof. Let &, ---, e be the
wnits nhiained in the preceding section. We wish to prové )
the existence of independent umits &, --+, & such ﬂm.
ench unlt ¢ depending on e, -+, & h% ihe form ?}
pflt -+ £ whoere the &, are rational integers {L\l pIE A
vool ol nnity in K. The uniquencss of this Tepresentation
follows from the independence of the & .

Ty 113, There is a positive nunt :%;}1 siech that of the
absoluly rolue o™ of cach of the codjygates of an integer w
i lese than A, then o 73 g roed ot i

L4 A, ihen 18 § 10 iﬁ‘ar /. k

There are only a Jll]lT(‘ numbm of ntegers a in K such

that all 1= comjugales are Ieas than 2 in absolute valuc.

~

For let N
. T " n—1 )
I’{ — 1':| - t _mxl \ = _‘ﬁ 1 J’.. B

he Lhe (ield pf)h’n\mml for o, Sinee each a; i3 an elementary
gymumel ric Inmmun in the roots, and sinee each root s in
absolute valfe! less than 2, we have

xt\"’ y

o &/ . : 3 —1i
\‘ al < () 2",
N\ ¢

i‘h{) a; ave rational mtegers, and therefore can fale on
»bfll‘ u finite number of different values. There are then
) ¢ mly 4 finite number of different polynomials for integers

ol the preseribed kind, and so only a finite number ¥

of such intesers,

Choose 4 g0 that A > 0, (1 + A« 2. This A has
the desired property, ag we now prove. Huppose w 1§ an
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integer such that | | < | + A4 =1, -+, n The
absolute values of the conjugates of the integers «°, I =
I --- N 4+ Larcallless than (1 + A0 < (1 -+ AV
2, so that there must be two exponenis &/, £ I > k,
such that «*” = &' Then o' ™ = 1, und o is 0 root of unity.

The lemma i= established, ~
Suppose n depends on the units e, -+, .. For SOTR .
rational integer ¥ RN
??NE?: . G:J' — 1‘ 5 = ,DC;_G“:N G :.‘
: N

where pis in K, p° = 1, and the a; are l‘atic@il"integvrs.
Then 4 and its conjugates are of the forme )

{11.8) = T TN = 1
where o is an N root. of unitpnd the #; are rational
numbers. O
Now constelprab Bramvrgid,
e

7= ngw .- g
RN

We wish to show that(for suitable choice of 3, 2y, -~ , a»
as rational integersiNe is a root of unity. By ({11.8)]
)

(11.9) _ r.r:fj\;Q PelT im0 e

| 1
£ >
\ + AN .
The » +  ncar forms Loy, =, +- -, 2.), where

L\]: Y85 — @, v :L'P = W — -1"1'}1—1?-7'1 =i

%fge can find for each §, 0 < § < 1, a set of rational integers
Nz, o ot all gero such that

4

£
hﬁg\'\\determinaut. of absolute value !, By Theorem 11.1

| s — @& by — sy <8

(11.9) becomes

o 1 T
Icr' <|€Ea)---e,(.’i°.
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4 N ]

Choose 6 so small that | ¢ | < 1 + 4. By Lemma 11.5
v iz & rout of unity. From the definition of ¢ i follows
that # can be written In the form

?}Ir}'yeflﬁ‘”éfy‘
Obgerve that § depends only on &, -, ¢ and that | ¥ [ W'

i3 Jess thun a bound depending only on ¢, & . anfg;\ “
any wirit g depending on ¢, -+ 1, & con be writlen in | .?g&rm
(1110 p= g N
where o is @ oot of wndly and M is a positive i‘?'tteb:ﬁr}dcpcnqu
only on the ¢, . This reprosentation is unu‘l\u\) for the ¢; are
independent,

Nol atl numbers of the form (11, l()} b\elong to the field K
Tor arbitrary ratiowal lnteﬂehsbx, Ilgut con°1der all units
L K expressible in that formng. Gh example i €, For
cach ¢, § = I, -«+ (,hoo§e<me such wmit,

— s?‘ ”if\; . ET&E,"M L i
for which ayy, > 0 1\du\=a1

The &£, o choz’ﬁ} have the property speeified atl the
bc;:ummrf ol rh; Ssection. For let 9 be a unit dependent on
by e, Gt s neeessarily of the form (11.10). By
Theorem/hY,

&

‘\\’J Je = ellpe + tl’? 0 S ZT < Erry
AN\
~ .
; %z hat, .
e - AT i tglar
} 7%, ar_ O'J” ity 611, A - G:‘L11J fr” ,

. . . I :

lov suitable intogers «; . » and &, are dependent on &1, -+,
& 80 8- %7 s also, Since 0 < §, < e and Zoe 13 3 TINLMU,
L= 0and

’ .. .
ST ® AL XN Zp_ S
L1 T R
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. v ? - .
Now repeat the procedure with a . oL Bventually we
obtain
r - — =
nEEST BT = Y

where p = oY s avoot of unity in the feld, Then 5 =

,oE{“ - £ s of the desired form.
Ta kh(m the uniqueness of this representution we nPPd \*
ouly show that &, - | £ are wdependent. Write \\ K
Lo by L Y D
SR
Binee {p: = 1 we hzu-'
: o ~\ .
log | &7 | = by, log &Y +d .l@" s
e by log 57
t,§ = 1, L If fhe £, are nop Jn\depem[vnt then the
deLermmaut lnrr Py vanishes§ bv the argument used
in the ]JT@{“(\{(‘f‘iﬁl‘b'&‘?’léhh{'alTﬂ&FP %;r, determinant
|log | e i = k& r-gF-”H =0,
contradicting the fact Hiat 100‘| & 1 #= 0.
\

G. The proof oqnpleted It remains only to show that
any r + 1 uts ‘e, @, -+, & are dependent. The 7

equations _ ¢, o’
A\

(11.11}"::*4“ S, log | el | = P= 1,

) i=1
N’

in N;g\e r =+ | unknowns ¢; have o solution for resl £; not
“@ﬂ %ero. Hence

) (11.12) [ef? ] en |91 = 1

i '3:1,""?‘.

7

As we showed at the end of §4, any unit e;has the property
erinlog [ 6™ | = ~ 37 ¢ log j € |.
=1

Then multiplying each side by ¢; and summing we obtain

4
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ea 2o e log e = 3, > e log Pef? |
=3

FEa
I r .
= =2 e 2 glog 7=,
i=1 =0 "y

3 - - ro (e . N\
by (11.11}. Hence Z-,;=u eilog i e} =0, so that (111} /’}}
holds also tor 7 = ¢ 4 1; it follows from the enmnemti‘;:}\\"w
of the conjugntes that (11,11}, and hence (11.12), ho
. . a
fore =1, -+ | n, ‘,K»

Not all the ¢; ave zero; we may suppose cnﬁ;&}U. By

(11.12) \‘\Q )

| eér‘) | — GE-;J é—,-,;;m, . | E?{-é) |—c,.;-¢:a, ,'\\z 1, e, m
. . : l\n(' \
By the same arsument which took ysé (11.8) to (11.10)
¥
ol M i M ( [y i
& =0 ':\irwvﬁfc!lbr‘g&!iﬁﬁr‘y,org.m
Ay

: . & s
80 that the units &, ¢, - - -, %enare dependent.
L R 3



112 MINKOWSKIDIS LEMMA
REFERENCIS

1. Tirkhoff und Muclane, Sureey of Modern Algedira, New York,
1948,
- Hardy and Wright, The Theory of Nwmbers, Osford, 103,
E. Hecke, Theorie der Algebraischen Zahlen, Leipzig, 1023
- D, Hilbert, Die Theorie der Algebrodschen Zahllarper, No. 7o
of Gessmmelte Abhandiungen, Berlin, 1932, A
O, I8 Landau. Finfdbrung in die Elementars wnd “i’?l’h‘?-’n'l" fb&
Theorie der Algebraischen Zehlen wwl der Tdeale, l{"lp’l‘ \nrl
Berlin, 1918,
6. . Landdu Voriesunger diber Zahlontheorie, 3 volu “"\ST dipzig,
1427,
7. 0. Ore, Les Corps Aifgebnqur’s el fa Thiorie «’N}buwr Taris,
1934,
8. L. W. Reid, The Elements of the Theorz,r o&}bgsbrfuc Nwmnbers,
New York, 1810 (v '
O, 0. M. Thomab H:,em i af Fqum‘iom (\),u York, 1948,
G, 11, =, \ .‘:Lllle Tty Lmi h érgm American Mathemali-
eal Moy 1?]“& m? y’ rfé% ,(3550—0“

W S LD

11, Herman W exl Algebraic JMJ{? i of Numbers, Prinecton, 1648
&
N
\
g\x\'\}
A
LD
t"\?s.l
A/
PO
2
’\J
O
Q\
~



INDEX

Algepraie extension of field, Integers, el[;,(,tu ale. 38, G-

simple, 37, multiple, 38. sian, 3, 7, rational, 5.
Algehralc indeger, 58, number, ]nteg.,t&l baslk 63, 70.

12, Treedyeible idet, 84, poly-
Associatoed numbers, 16, 77, 82, nomial, 23, 5t. i
Basiz of field, 47, infegral, 63, Imill, W 85 £

of idenl, T8 hummor TR L1 ¢\
(lage number, 111. Lattice pumt 125, N
Complete residue system, 11 Linear dependence, 47. Dy
Congraence of ideals, 103, of  Liowville, J., 43, ™

nuthers, 12, 149, Maxumal ideal, 85, 279\
Conjugates, 36, 53. Minimal poly numuK
Cvelotomie field, 55, 70. Minkowski’s gedfidffic J{’Htm’i.
edelind-1lasse exitevion, 100. 125.

Degree of number, 36, of poly-  Monie polynoiudl, 26,

noamial, 52. Noother, 12 é‘?

Discriminant of bagls, B, of Norm of\lml 104, of number,
r ﬁetldl, GS. o !2‘
divisibility of integers, 1, of T

polynomials, 22.!: www.db El@“ﬁ?ﬁho”ﬁ . I-H
Drivisor of ideal, 83. Telynomial, 22, ficld, irre-
Hisenstein’ 5(,1"1{911011 26, 24, v.}‘ ’ du(‘tb!(}__ 2-5_ 36, mmrm l,
TFlementary -.\mmoiuc iung 35, momie, 20, primirive, 27,

([01}_3 32, A symunetieie, 31,

Tuetid, 1 ~ P'rime ideal, 85, 110, aurmber, 1,
T tuqion of field, 37.{fwite, C6,12, 14, 71
18, multiple a,ig(;bm\?’ 34, Primitive polynomial, 27, roois

slmpl:‘ algobraieN3T _of umity, 56.
Facior of ideal,€3. Principal ideal, 80.
Fermul, P, de, 1-1 M4, 108, Quadratie field, 61
Yo 1o Yheorem, 115. R, field of rational numbers, 22.
I 1r‘]d extenfigll of, 37, number, Hamified ideal, 101
&5, polvnomial, 53'_ Rational integer, 6.
Relativelr prime, 2, 24.

ngi.(_k{til(‘ Gl 1
Fun S{yomq system, 47, .Rg:sulup cluss, HM.
E'u1 fdimental theorem of arigh-  1ng, 60.

amelic, 5, of ideal theory, . Ee‘ﬁmﬁix 45
O 5. Schneider, L, 45.
W w::l 1111 in[regm;, g"gl Symmetric pelynomials, 31.
i LI, o, 8 Transeendental mumnher, 42, 45,
Gelfond, A, 45
Bl A, 4 . Unique factorization of wlea.l ,
Crentest cormmon divisor, T4 85, 92, of integers, 1, 3, 6
Tighest common Tactor, 96. 10, 71, 81. > b ’
Hurwitz, A, 85. Units, 71, 73, 75, 132,

Tdeal, 78, irreducible, 80, maxi-  Unramifed ideal, 101,
mal, 85, prime, 83, prin-  Vandermonde determinant, 53.
mpa.l 80, ramified, 101. Vandiver, ., 116.

Infiniiude of primes, 12, 73 Wilgon’s theorem, 15

143




	Page 1�
	Page 2�
	Page 3�
	Page 4�
	Page 5�
	Page 6�
	Page 7�
	Page 8�
	Page 9�
	Page 10�
	Page 11�
	Page 12�
	Page 13�
	Page 14�
	Page 15�
	Page 16�
	Page 17�
	Page 18�
	Page 19�
	Page 20�
	Page 21�
	Page 22�
	Page 23�
	Page 24�
	Page 25�
	Page 26�
	Page 27�
	Page 28�
	Page 29�
	Page 30�
	Page 31�
	Page 32�
	Page 33�
	Page 34�
	Page 35�
	Page 36�
	Page 37�
	Page 38�
	Page 39�
	Page 40�
	Page 41�
	Page 42�
	Page 43�
	Page 44�
	Page 45�
	Page 46�
	Page 47�
	Page 48�
	Page 49�
	Page 50�
	Page 51�
	Page 52�
	Page 53�
	Page 54�
	Page 55�
	Page 56�
	Page 57�
	Page 58�
	Page 59�
	Page 60�
	Page 61�
	Page 62�
	Page 63�
	Page 64�
	Page 65�
	Page 66�
	Page 67�
	Page 68�
	Page 69�
	Page 70�
	Page 71�
	Page 72�
	Page 73�
	Page 74�
	Page 75�
	Page 76�
	Page 77�
	Page 78�
	Page 79�
	Page 80�
	Page 81�
	Page 82�
	Page 83�
	Page 84�
	Page 85�
	Page 86�
	Page 87�
	Page 88�
	Page 89�
	Page 90�
	Page 91�
	Page 92�
	Page 93�
	Page 94�
	Page 95�
	Page 96�
	Page 97�
	Page 98�
	Page 99�
	Page 100�
	Page 101�
	Page 102�
	Page 103�
	Page 104�
	Page 105�
	Page 106�
	Page 107�
	Page 108�
	Page 109�
	Page 110�
	Page 111�
	Page 112�
	Page 113�
	Page 114�
	Page 115�
	Page 116�
	Page 117�
	Page 118�
	Page 119�
	Page 120�
	Page 121�
	Page 122�
	Page 123�
	Page 124�
	Page 125�
	Page 126�
	Page 127�
	Page 128�
	Page 129�
	Page 130�
	Page 131�
	Page 132�
	Page 133�
	Page 134�
	Page 135�
	Page 136�
	Page 137�
	Page 138�
	Page 139�
	Page 140�
	Page 141�
	Page 142�
	Page 143�
	Page 144�
	Page 145�
	Page 146�
	Page 147�
	Page 148�
	Page 149�
	Page 150�
	Page 151�
	Page 152�
	Page 153�
	Page 154�

